

Synergy Susol Switchboards

Manufactured by Spike Electric Controls using Eatons Power Defense Circuit Breaker technology

About:

*The UL891 Compliant High quality Engineering Products

We, at Spike Electric Controls, introduce our Synergy Susol Switchboards range, which is an engineering marvel. We aim to bring you power products that are engineered for safety, reliability, and quality. We are committed to providing our clients with innovative solutions and meeting complex technical requirements with ease.

Our Synergy Susol Switchboards range is compliant with the specifications of the UL891 quality control standard, which is one of the most common and most widely trusted standards for switchboards. The UL standards are essentially a set of safety regulations that have been certified by OSHA (Occupational Safety and Health Administration) in the U.S. These standards have been approved by the U.S. federal government for the safety of workers.

The specifications of the UL891 quality control standard apply to the switchboards rated for 600V or less in accordance with the National Electric Code (NEC) and ANSI/ NFPA 70. This standard also covers the switchboards which are used in circuits with available short circuit currents up to 2,000A or less.

Our Synergy switchboards are tested after being subject to a 2,000A fault current. This certifies that our product can survive the extreme physical stress of such an event.

Safe Reliable Energy Solutions

This gives you an assurance that our Synergy Susol Switchboards range will hold up even in the most extreme circumstances.

The UL standards for switchboards focus on all aspects of safety W.R.T the switchboard systems. As per the requirements of the UL certification, our Synergy Susol Switchboards range is periodically sampled and tested to ensure compliance. So, there is a constant testing and thus, our task does not end with getting certified once only.

The badge of the UL certification conveys trust between the manufacturers, governing bodies, and consumers.

Installation and Maintenance:

Synergy Switchboards – Easy Installation and Maintenance

Our Synergy Susol Switchboards range is built to last and features design innovations that facilitate easy installation and maintenance. These switchboards are easily available to meet the needs of contractors, consultants and end-users.

The Synergy Susol Switchboards range adheres to the highest standards in terms of quality. We offer custom or standard switchboards that are easy to install, we are available 24/7 to assist any installation questions. Spike Electric will provide you with a sales engineers contact information before shipping that you can call directly for any questions 24/7.

Our Synergy Susol Switchboards range designs entail the most frequently requested ratings and options, with faster delivery.

Features for the Custom Option:

Synergy Susol Switchboards Features for the Custom option

- Circuit breaker and fusible switch mains and feeders
- NEMA Type 1, 12, 4, 4x or Type 3R available
- NEC 2017 Arc Energy Reduction available or also called arc-flash mitigation system available for main breaker
- 6000 Amp Max on Switchboards
- 65 kAIC standard bus bracing. Optional 100 or 200 kAIC
- Voltages up to 600 Vac or 250 Vdc
- Sequence utility metering hot or cold
- Internally mounted surge protection
- devices
- Customer metering
- Main Tie Main
- Dual Generator Input

- Emergency Generator Input Parallel Switchboard
- Automatic Transfer Switch Integrated into Switchboard
- Manuel Transfer Switch Integrated into Switchboard
- Distribution Transformers Integrated into Switchboard
- Mini Power Zone Integrated into Switchboard
- Long-Time Delay · Short-Time Pickup · Short-Time Delay · Instantaneous Pickup · Ground Fault Pickup available on all circuit breakers
- Custom Busway and transformer connections available
- PLC or relay based main automatic transfer schemes
- Microprocessor-based metering and monitoring equipment
- Utility metering provisions

Features for the Standard Option:

Synergy Susol Switchboards Features for the Standard option

- Voltages to 600 Vac or 250 Vdc
- NEMA enclosure types indoor and outdoor
- Ratings up to 6000A, 100 kA SCCR
- Bussing options aluminum or copper with tin plating or copper with silver plating option
- Distribution configurations available –
 Single or Double Row I-Line
- Internally mounted surge protection devices

Eastures for the Contorn On th

Safe Reliable Energy Solutions

Commercial Multi-Metering:

We offer an opportunity for providing revenue metering for multiple tenants in a cost-effective manner. Our aim is to reduce footprint requirements as well as installation time for projects that require top exit of load side cables. This proves to be an ideal option for shopping centers or for shopping malls.

Features of Commercial Multi-Metering:

- Commercial multi-metering is a hot sequence metering.
- It is available with Lever By-pass or Non-Lever-By-pass construction.
- Switchboard ratings through 6000A, 100 kA.
- Contains options to add future tenants and future sections.
- Factory installed devices are wired from the meter socket to disconnect.
- NEMA Type 1, 12, 4, 4x or Type 3R available.
- Alignment options include front and rear.
- Meter sections are available in three or six socket section configurations.
- 60-200A without lever by-pass contains inbuilt meter sockets, 5 or 7 jaw, ring type, test block.
- 60-200A lever by-pass contains inbuilt meter sockets, 7 jaw, ringless.
- 400-1200A have current transformer rated meter compartments.

Synergy Low Voltage Switchboards:

Synergy low voltage switchboards offer an economical way of distributing electricity. These switchboards are customized and may be used as a service entrance equipment or as distribution centers in commercial, institutional, and industrial applications. Synergy low voltage switchboards are enclosed and free-standing structures, which contain circuit breaker for services rated up to 6000A with a maximum voltage of 600 VAC.

In addition, there is an auxiliary section that facilitates cable or bus transition. It also provides additional space for connecting the service conductors to the line side of the main.

The Synergy low voltage switchboard frame mounts various components in the switchboard, which include transfer switches, special metering systems, and throw-over systems.

Features of Synergy Low Voltage Switchboards:

- Switchboard ampacity to 400A to 6000A
- Voltage: Up to 600Vac, or 250VdcSuitable for service entrance or
- distribution
 NEMA enclosures Type 1, 12, 4, 4x or
- Type 3R
 Testing of short circuit rating of 3 cycles (.05 seconds); or immediate trip of tested OCPD; or braced to UL configuration standards
- Accessibility: front or rear
- Assembling in factory
- Sequence utility metering for hot or cold
- Customer metering
- Availability of protective device accessories
- Fully rated copper bus systems 1000A per sq in.
- Fully rated aluminum bus systems 750A per sq in.
- A large array of integrated components available SPD, distribution transformers, automation, automatic transfer switches, etc.

Stainless Steel Switchboards & Stainless Steel Nema 4x Switchboards:

Outdoor Stainless steel switchboards are common in highly corrosive environments that a painted steel enclosure may corrode over time. The longevity of the Switchboard is significantly increased when utilizing a stainless-steel Switchboard in those types of environments. When ordering a Nema 4x Switchboard there is a lot of room for error due to some companies not understanding the heat loss calculations that need to be done on a Nema 4X Rated Switchboard. Nema 4x Switchboard should be rated for windblown dust and rain, splashing water, and hose directed water; undamaged by ice which forms on the enclosure. Circuit Breakers, switches, transfer switches and other devices generate allot of heat. The heat needs to escape through a Nema 4x ventilated or AC cooled system or the enclosure needs to be sized properly in order to withstand the internal heat. Nema 4x Switchboards can have issues like nuisance tripping of circuit breakers, over heating of components, which in turn defeats the purpose of the 4x enclosure of increasing the longevity of the internal electrical components. Let Spike Electric Design and build your custom Nema 4x Switchboard. Our team of electrical engineers will ensure the heat calculations are done properly and working with their counterpart mechanical engineers will design the enclosure to fit the custom application.

Quick Ship Switchboards: 2-3 Week Lead Time

Synergy switchboards are quick ship switchboards which are suitable for use as service entrance equipment on ac systems. We offer custom or standard Speed D quick ship switchboards that feature our unique I-Line plug-on connections in group-mounted construction. You just need a screwdriver to ratchet the line end of a molded-case circuit breaker onto the I-Line bus assembly. This plug-on design facilitates quick installation and mounting of circuit breakers up to 1200A.

Optional Seismic Compliance of Synergy Switchboards:

Our Synergy Switchboards adhere to the requirements of the International Building Code (IBC), California Building Code (CBC), Office of Statewide Health Planning and Development (OSHPD), and ASCE/SEI 7 based on triaxial shake table testing; for equipment operation after a seismic activity.

A shake table testing was conducted by an independent test facility and compliance was verified to Ip = 1.5. The post test equipment functionality was verified as per the ASCE 7 requirements, which are a part of the seismic designated system.

Safe Reliable Energy Solutions

Range – Benefits and Applications:

Our Synergy Susol Switchboards range provides various benefits, which include –

- custom or standard installation optionsquick installation time and mounting
- facility
- offer short lead times and an expedited delivery

Quality Management System ISO 9001 Manufacturing:

Learn more about our Quality Control Management system

The Synergy Susol Switchboards range has applications in various industries , which include -

- Manufacturing
- Water wastewater
- Commercial buildings

- Healthcare facilities
- Data Centres
- Textile

•

•

- Industrial buildings
- Commercial office buildings
- Pharmaceuticals
- Offshore Designs Available
- Oil & Gas

Contact us for product questions. We are happy to help and walk you through the installation process.

Catalog Number System

SWB	LS	<u>4X</u>	480V	SC	: L	6	00	50	Μ	IB400	T	15-1	200	ISOG
Catalog Pre	fix					Bu	is Amp	s	Main B	Breaker		Branch	Breakers	
Synergy Susol Sw	vitchboards					400) n		400A	MB600		Poles	45 4000	
NEMA Ratin	q					80))		800A	MB800		1	15-1200	
Nema 1	1					120	00		1200A	MB1200		2	15-1201	
Nema 3R	3					16	00		1600A	MB1600		3	15-1202	
Nema 4 Painted	4					20	00		2000A	MB2000				
Nema 4x Stainles	s 4x	(25	00		2500A	MB25000	Power E	Entry		
	Voltage					30	00	_ 1.	3000A	MB3000	Top Feed	Т		
	3-Phase 4-	-Wire	480			40	00		4000A	MB4000	Bottom Fee	ed B		
	3-Phase 3-	Wire	400V			50	00	- 1	5000A	MB5000				
	3-Phase 3-	Wire	600V			600	00		6000A	MB6000				
		Bu	s Material		Cabl	е			Iviairi Lugi	S WLO				
		Alu	minum	А	Inco	ming	Bus	Ratin	g E	nclosure M	odification	is & Acc	essories	
		Cop	oper	С	Left	L	42ka	42	lso	lated Ground				ISOG
		Silv	er Plated Copper	SC	Right	R	50kA	50	Aus	stomatic Transfe	er Switch Sectio	n		ATS
							65kA	65	Ма	inuel Transfer Si	witch Section			MTS
-	States						00KA	00 10	n Ca	m Lok Panel for	Generator Feed	Ł		CL
			Barris Bag	_			200kA	A 20) Ma	in Tie Main				MTM
									Du	al Genrator Input	t			DGI
			11 W	-					Mir	ni Power Zone Se	ection 45KVA Ti	ransformer 8	Lighting Pane	MPZ
									Pov	wer Meter W/CT	's		0 0	PM
		hat a							Su	rge Protection De	evice must spec	cify required	kA 100kA-400k	a SPD
		-							LSI	IG				LSIG
									AR	MS				AER
									Sei	rvice Enterance I	Rated			SER
									Util	lity Structure				US
		-												
						*Custo	om frame	sizes a	available	e, we will custo	om build you	r switchbo	ard to the siz	e you need.

UL891 Switchboard Solution

UL489 MCCB

Susol Super Solution UL891 Switchboard Solution

Contents

Overview	26
Structure	06
Features	08
Applicable circuit breakers	10
Bus strap kits	12
Type of Protection cover	13
Dimensions	14
Part numbering	20

UTS1200

Overview

The Susol UL891 switchboard solution meets UL67/UL891 certification standards for bus straps and interiors utilizing UL489 MCCBs.

There are five types of interiors, three types of bus straps, and a wide range of MCCBs available which allow flexibility during the development and selection stage for new panels. It is a cost effective and allows for safe installation and interchangeability.

UL489 MCCB

LS's supply scope

UL891 Switchboard Solution

Panel builder

UL67 Switchboard

LS's supply scope

* Exclude frames

Features

- UL67/UL891 Panelboards
- UL489 Molded case circuit breakers
- Main bus, 1200/2000/2400/4000/6000A copper
- Branch-bus direct connection
- Up to 1200A breaker mounted as a branch device
- Double branched 150, 250 and 400AF breakers
- The interior maximum short circuit interrupting rating 100kA at 480Vac
- Individual breaker Protection cover plates

Structure

1 Blank filler plate

Used to cover blank space on chassis

2 Circuit breaker cover

Used to protect breakers and bus straps

- single mounting type
- double mounting type

3 Filler plate

Filler plates are used to fill and protect unused spaces in the circuit breaker cover

4 Bus strap

- single mounting type
- double mounting type
- Installation case

150AF of single bus strap
150AF of double bus strap
800AF of single bus strap

Note : Exclude steel frames of outer angle

5 Interior

• 1200A(single chassis bus)

- 2000A(double chassis bus)
- 2400/4000/6000A

6 UL489 MCCB

- Ampere rating: 40~1200A
- Poles : 2, 3
- Various trip units: FTU, FMU, ATU, ETS, ETM, OCR, MCP, MCS
- Standards: UL489, IEC60947-2

UL891 Switchboard Solution

Features

Product selection sequence

Chassis layout

1200AF chassis can be utilized for MCCBs UTS 150AF to UTS 800AF. 2000/2400/4000/6000A chassis can be utilized for MCCBs UTS 150AF to UTS 1200AF.

There are dedicated covers for each capacity of the breaker, which are 4X, 6X, and 9X high. Considering the height of circuit breaker cover, the breaker can be installed within 45X heights for the 1200/2000A interior. For 2400/4000/6000A interiors, there are three types of 36/46/66X.

Breakers are installed in order of lowest at the top to highest capacity at the bottom. Install the breakers, and insert the blank filler plate of various heights to fill the remaining space and complete the panel. The top and bottom spaces can be used for ventilation and wire connections.

1200A

2000A

Interior

•		4.
•	8	
	0	
	· · · · · · · · ·	
		11
	Los	
•		
•		a 1
•		
•		11
•	· · · · · · · ·	11
•		11
•	.'''.	8 H.
•		8 H.
		.
		10
		10
		10
•		
	· · · · · · · · ·	
	· · · · · · · · · · ·	
	· · · · · · · · ·	
		11
•		11
•		11
•		
•		
	· · · · · · ·	
		80
		10
1		
•		
•	8	
	8	
		10

Descript	ion	Interior-1200	Interior-2000				
Rated cur	rent	1200A	2000A				
Rated short breakin capacit	-circuit g y	100kA @480Vac					
Applicable MCCB		UTS150, UTS250, UTS400, UTS600, UTS800	UTS150, UTS250, UTS400, UTS600, UTS800, UTS1200				
Minimum enclosure	mm	914.4 × 2,286 × 406.4	1,168.4 × 2,286 × 508.2				
size (W×H×D)	inch	36" × 90" × 16"	46" × 90" × 20"				
Standard		UL67					

De	escripti	on	lı	nterior-240	0	li	nterior-400	0	Interior-6000			
Ra	ited curr	ent		2400A			4000A		6000A			
Rateo brea	d Short- king cap	circuit acity	100kA @480Vac									
Appl	icable M	ССВ	UTS150, UTS250, UTS400, UTS600, UTS800, UTS1200									
Frame size			36X 46X 66X		36X	46X 66X		36X	46X	66X		
	mm	W	542				542			562		
		Н	1256.6	1520.6	1995.8	1256.6	1520.6	1995.8	1256.6	1520.6	1995.8	
		D	92			92			127.3			
		W		21.34			21.34		22.13			
	inch	Н	49.47	59.87	78.57	49.47	59.87	78.57	49.47	59.87	78.57	
		D		3.62			3.62		5.01			
Standard							UL891					

Applicable circuit breakers

Susol UL MCCB

Susol UL489 MCCBs are designed to protect low voltage electrical systems from damage caused by overloads and short circuits.

UTS600

UTS150

UTS250

UTS400

UTS800

UTS1200

			Pe	erforman	ce		Trip units							
Breaker type	Ampere frame	Ampere rating	80% rating	100% ¹⁾ Rating	kA @480 Vac	Pole	FTU	FMU	ATU	ETS	ЕТМ	OCR	МСР	MCS
		40/50/60/	Ν	NT	35									
UTS150	150	70/80/90/ 100/125/	Н	HT	65	2,3	•	•	•	•	-	-	•	•
		150A	L	LT	100									
		150/160/	Ν	NT	35	2,3								
UTS250	250	175/200/	Н	HT	65		٠	•	٠	•	-	-	•	•
		225/250A	L	LT	100									
UTS400	400	250/300/ 350/400A	Ν	NT	35									
			Н	HT	65	2,3	٠	•	٠	•	•	-	•	•
			L	LT	100									
	600	500/600A	Ν	-	35	2,3								
UTS600			Н	-	65		•	•	•	•	•	-	•	•
			L	-	100									
		100/000/	Ν	NT	35									
UTS800	800	400/600/ 630/800A	Н	HT	65	3	-	-	-	-	-	•	•	•
			L	LT	100									
			Ν	-	35									
LITS1200	1200	800/1000/	Н	-	65	З	_		_	_	_			
0131200	1200	1200A	Р	-	50	5	-	-	-	-	-		•	-
			L	-	100									

Note1) The 100% rated MCCB is available with 90°C wire.

Circuit breaker terminals

UTS150 to UTS1200 frame circuit breakers can be ordered with line side and load side lugs.

The standard lugs can be removed for the installation of bus connections. All lugs are UL/cUL Listed Certified for their proper application and marked for use with aluminum and copper (Al/Cu) or copper only (Cu) conductors. Lugs suitable for copper and aluminum conductors are made of tin-plated aluminum. Mechanical lugs are sold either factory installed or as field installable kits.

Breaker type	Lug type	Ampere rating	Applicable wire (Copper)	TORQUEN N∙m (Ib-in)	
		1.6~15A	14 AWG	4.1 (36.2)	
UTS150	AL150TS	20~30A	12~10 AWG	5.4 (47.8)	
		40~175A	8~2/0 AWG	15.1 (133.6)	
		150~175A	1/0~2/0 AWG	32 (283 2)	
UTS250	AL250TS	200~225A	3/0~4/0 AWG	32 (283.2)	
		250A	250~350 kcmil	44 (389.4)	
1175400	AL 400TC	250, 300A	1/0 AWG~300 kcmil	40.5 (358.5)	
013400	AL40015	350, 400A	350~600 kcmil	54 (478)	
UTS600	AL600TS	500, 600A	2/0 AWG~350 kcmil	40.5 (358.5)	
UTS800	AL800TS	400, 600, 630, 800A	3/0 AWG~300 kcmil	45 (398.3)	
UTS1200	AL1200TS	800, 1000, 1200A	3/0 AWG~350 kcmil	45 (398.3)	

Note1) For the UTS150, barriers are required when connecting the breaker to the bus.

[UTS150 + barrier]

[Barrier for UST150]

Bus strap kits

Each kit includes copper connectors, mounting brackets, cover, hardware and instructions.

		Sinona kasuju	Mounting type								
Breaker	Pole	Space requir		1200A		2000A					
туре		Inch. (mm)	"Х"	Single center	Single	Double	Single center	Single	Double		
UTS150	2, 3	4.16 (105.6)	4X	_	•	•	_	•	•		
UTS250	2, 3	4.16 (105.6)	4X	-	•	•	-	٠	•		
UTS400	2, 3	6.24 (158.4)	6X	•	-	-	•	•	•		
UTS600	2, 3	6.24 (158.4)	6X	•	-	-	•	-	-		
UTS800	3	9.36 (237.6)	9X	•	-	-	•	-	-		
UTS1200	3	9.36 (237.6)	9X	_	-	-	•	-	-		

Note) 1. X=1.04 Inches (26.4mm) 2. Single center: There is one open space.

3. Single: A filler plate is provided that covers one of the two spaces.

4. Circuit breaker is not included.

5. The single center types have L type (line side to the left) and R type (line side to the right) depending on the position of the breaker.

Dimensions

Type of protective cover

Blank filler plate

Used to cover blank space on chassis. All plate heights are measured in "X" units. 1X equals 1.04 inches (26.4 mm) The blank filler plate heights are from 2X to 9X.

	Fra	me	Hole spacing						
Blank	W	н		b					
	inch. (mm)	inch. (mm)	inch. (mm)	inch. (mm)	X				
2X	_	2.08 (52.8)		-	-				
3X		3.12 (79.2)		-	-				
4X		4.16 (105.6)		-	-				
5X	04 50 (000)	5.20 (132.0)		3.12 (79.2)	ЗX				
6X	24.53 (623)	6.24 (158.4)	23.94 (608)	4.16 (105.6)	4X				
7X		7.28 (184.8)		5.20 (132.0)	5X				
8X		8.32 (211.2)		6.24 (158.4)	6X				
9X		9.36 (237.6)		7.28 (184.8)	7X				

Note) 1. hole size: Ø8×12

2. A box contains 5EA(7X~9X) or 10EA(2X~6X) blank filler plates and is sold on a box-by-box basis.

Circuit breaker cover

All bus strap kits include a circuit breaker cover.

Dimensions

	Fra	me	Hole spacing						
Circuit breaker	W	н	а	b					
breaker	inch. (mm)	inch. (mm)	inch. (mm)	inch. (mm)	X				
UTS150/250		4.16 (105.6)		-	-				
UTS400/600	24.53 (623)	6.24 (158.4)	23.94 (608)	4.16 (105.6)	4X				
UTS800/1200		9.36 (237.6)		7.28 (184.8)	7X				

Note) hole size: Ø8×12

Filler plate

The filler plates are used for single mounting in the double mounting type of the UTS150/250 and UTS400. The filler plates are required in addition to circuit breaker cover whenever a branch circuit breaker is specified.

Dimensions

	Hole s				
Circuit breaker	а	b	Hole size		
	inch. (mm)	inch. (mm)			
UTS150/250	3.47 (88.1)	2.87 (73)			
UTS400/600	6.12 (155.5)	4.21 (107)	NO. 8-32 UNC		

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 sales@spikeelectric.com | spikeelectric.com Copyright © 2020 Spike Electric Controls

Dimensions

Chassis layout

Dimension: inch[mm]

UL891 Switchboard Solution

Part numbering

Circuit breakers

Trip unit: FTU, ATU, FMU, ETS, ETM, MCP, MCS

UTS - 2	50			FTU 25	50A		3P	LO	UL
Model		Туре		Trip unit			Poles		Suffix
UL type TS	Ν	Normal, 80% rating	FTU	Fixed trip unit		2P	2Pole		ULUL
	Н	High, 80% rating	FMU	Fixed magnetic trip unit		3P	3Pole		
Ampere frame	L	Current limit, 80% rating	ATU	U Adjustable trip unit					
150	NT	N type 100% rating	ETS Electronic trip unit standard						
250	HT	H type 100% rating	ETM	Electronic trip unit multi		Dete	d ouweent		Torminolo
	LT	L type 100% rating		function		Rate	a current		Terminais
400			MCP	Motor circuit protector				LO	Lugs load side
600			MCS	Molded case switch				-	Bolt-on

Trip unit: OCR

UL891 Switchboard Solution

Bus strap kits

BSK		
Model		
Bus strap kits		
Model Bus strap kits		

—	S - 3F		
Code	Bus strap type	Pole	Line side
S - 2P	Single	2P	-
S - 2P	Single	3P	-
SC - 2PL	Single center	2P	Left
SC - 3PL	Single center	3P	Left
SC - 2PR	Single center	2P	Right
SC - 3PR	Single center	3P	Right
D - 2P	Double	2P	-
D - 3P	Double	3P	-

Blank filler plate

Note) A box contains 5 or 10 protector cover blanks and is sold on a box-by-box basis.

Filler plate

Note) A box contains 30 protector cover fillers and is sold on a box-by-box basis.

Super Solution for Protection

The new Susol series with thermal-magnetic circuit breakers are designed to protect low voltage electrical systems from damage caused by overloads and short circuits.

FOR POWER DISTRIBUTION

High breaking capacity Optimum coordination technique Powerful engineering tools Reverse feeding

FOR PROTECTION OF MOTORS AND THEIR CONTROL DEVICES

Optimal overload protection Guaranteed Short Circuit Current Ratings

FOR CONTROLLING AND DISCONNECTING CIRCUITS

FOR EXTENSIVE APPLICATIONS

Wide range of optimized auxiliaries and accessories

SUSOL MCCBS ATAGLANCE.

FOR POWER DISTRIBUTION

- High breaking capacity
- Optimum coordination technique
- Powerful engineering tools
- Reverse feeding

FOR PROTECTION OF MOTORS AND THEIR CONTROL DEVICES

- Optimal overload protection
- Guaranteed Short Circuit Current Ratings

3 FOR EXTENSIVE APPLICATIONS

• Wide range of optimized auxiliaries and accessories

FOR CONTROLLING AND DISCONNECTING CIRCUITS

SIMPLIFIED PRODUCT RANGE

- AF: 100AF, 150AF, 250AF, 400AF, 600AF, 800AF, 1200AF
- Ampere Range: 15A ~ 1200A
- Pole: 2P, 3P

VARIABLE ACCESSORIES

- Electrical auxiliaries[AX, AL, UVT, SHT]
- Extended and direct mount rotary handle
- Flange handle with flexible cable and linkage
- Variable depth mechanism
- Locking devices
- LUG for CU/AL cable with UL486

HIGH PERFORMANCE

- Ultimate breaking capacity (kA rms)
- Max 100kA @480VAC and 50kA @600V

STANDARDS

- World class with UL489
- UL489
- CSA
- IEC60947-2
- Class 1E for Nuclear power plant
- EQ : Environment Qualification
- SQ : Seismic Qualification

VARIOUS TRIP UNITS

- ATU: Adjustable thermal & magnetic unit
- FMU: Adjustable thermal, fixed magnetic unit
- FTU: Fixed thermal & magnetic unit
- ETS: Electronic trip unit (LI, LSI)
- ETM: Electronic trip unit (LSIG, Multi-function unit)
- OCR: Electronic trip unit

MCP CHARACTERISTIC

- Simplified product range
- AF: 150AF, 250AF, 400AF, 600AF, 800AF, 1200AF
- Ampere Range: 1.6A ~ 1200A Only 3 Pole use
- Standards
- Instantaneous circuit breaker with UL489
- Motor protector with MC and Relay with UL508
- IEC60947-2
- MCS CHARACTERISTIC
- Simplified product range
- AF: 100AF, 150AF, 250AF, 400AF, 600AF, 800AF, 1200AF - Ampere Range: 100A ~ 1200A
- **Pole**: 2P, 3P
- Standards
- World class with UL489

0 0 0 3 МССВ TRIP RELAY Susol 6 UTS800L Valor de interr Valor de interr Valor d' inter 240V ~150kA 480V ~100kA 600V ~ 50kA UL All and a state of the state of CE X Torque 398.3 398.3 N-m 45 45 * -IOTS A 008 -----LS ۲ ۲

UTS800

UTS1200

UTS600

Engineered for Optimal Protection

SWITCHBOARD SOLUTIONS

 $\star \star$ Made in the USA $\star \star \star$

SUSOL SERIES OFFER VARIOUS TRIP UNITS :

- ATU (Adjustable thermal & magnetic unit)
- FMU (Adjustable thermal, fixed magnetic unit)
- FTU (Fixed thermal & magnetic unit)
- ETS (Electronic trip unit for UTS150...UTS600)
- **ETM** (Electronic trip unit for UTS400, UTS600)
- OCR (Electronic trip unit for UTS800, UTS1200)

- UTE100...UTS600 frame
- 15-600 amperes
- Factory-installed
- Several versions by rated current and function

FTU

- Fixed Thermal. 15A~600A
- Fixed Magnetic. 400A~6000A

FMU

- Adjustable Thermal. 25A~600A(0.8~1 x In)
- Fixed Magnetic. 400A~6000A

ATU

Adjustable Thermal. 100A~600A(0.8~1 x ln)
Adjustable Magnetic. 500A~6000A(5~10 x ln)

MCP

Adjustable Magnetic. 10A~6000A

MCS

• Fixed Magnetic. 1000A~6000A

ELECTRONIC TRIP UNITS

- UTS150...UTS600 frame
- 15~600 amperes
- Factory-installed
- Several versions by rated current and function

ETS

Electronic trip unit for UTS150...UTS600

ETM

Electronic trip unit for UTS400, UTS600

ELECTRONIC TRIP UNITS

- UTS800, UTS1200 Frame
- 400-1200 Amperes
- Factory-installed internal trip units.
- Several versions by rated current and function

1. N, A type Knob information

- 2. P, S type Knob information
- 3. MCP800 type Knob information
- 4. MCP1200 type Knob information

5. MCS800/1200 type Knob information

FUTURING SMART ENERGY

FOR EXTENSIVE APPLICATIONS

Wide range of optimized auxiliaries and accessories

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 sales@spikeelectric.com | spikeelectric.com Copyright © 2020 Spike Electric Controls

.000.

Series Overview

			FTU L: 1004 50 - 00 L5 50 -	5			LS (0)	(B) ATU	••••••••••••••••••••••••••••••••••••••
			••••	•		• • • •			9 , 9
Frame			UTE100			UTE100			UTS15
Maximum rated current		1(00A	30A	1(A00	30A		150A
Number of poles	· · ·		2			3			2, 3
Breaker type	· · ·	E	N	Н	E	N	н	N	н
UL489/CSA C22.2	· · · · · · · · · · · · · · · · · · ·		UTE100			UTE100			UTS15
Interrupting capacity	120/240V	50	65	100	50	65	100		-
(kA rms)	240V ac	50	65	100	50	65	100	65	100
AC(50/60HZ)	480V ac	25	35	65	25	35	65	35	65
UL, CSA	600V ac							18	35
	600Y/347V ac	14	18	35	14	18	35		
UL489 DC			UTE100			UTE100			UTS 15
Interrupting capacity	250V dc-2P	16	25	-	16	25	-	35	50
(kA) DC	500V dc-3P				25	35			
UL, CSA	600V dc-3P							35	50
IEC 60947-2			UTE100			UTE100			UTS15
Illtimate breaking capacity	220/240V	50	65	65	50	65	65	65	100
(kA rms) AC	380/415V	25	35	35	25	35	35	35	65
50/60Hz, Icu	480/500V							18	35
Service breaking capacity. Ics (%Icu)		100%			100%			100%
Insulation voltage. Ui	<u>.</u>		750 Vac			750 Vac			750 Va
Impulse withstand voltage. Uimp			8 kVac			8 kVac			8 kVac
Rated short-time withstand current	(lcw)								-
Utilization category			A			A			Α
	Amperes	15~	100A	15~30A	15~	100A	15~30A		40~150
F : Fixed	ΔΤυ								
A : Adjustable	FMU					•			
M : Magnetic	FTII		•			•			
E : Electronics	FTS								- (60 100 1
	ETM								-
			_			_			
									16-60
MCP	Amperes								100~150
	MCP								
	Amperes	1(00A						1504
MCS	MCS		•			•			- 130A
Unit mounted			•			•			
Machanical lugs									
Busbar connectors			•			•			
Control wire terminal kit									•
Terminal shields									
Interphase barriers			•			•			0
Shunt trip			0			0			
Undervoltage trip			•			•			
Auxiliary switch			0			•			
Alarm switch			•			<u> </u>			
Fault alarm switch									•
Flange cable handle			•			•			0
Flange variable-depth mechanism			•			•			
Directly-mounted rotary operating har	dle					•			
NEMA-Door-mounted operating mach	anisms		0			•			
IEC-Door-mounted operating mechani	sms		•			•			
Mechanical interlocks	omo		-			•			<u> </u>
Handle nadlock attachmont			•			•			
Motor operator			-			-			
	2. Dolo		164(0.74)						3.44(1.5
weight(approximate)	2-Pole					2 33(106)			3 95(1.7
		W	н		w	L.00(1.00)			н
Dimensions		2.01/51	5 10(100)	2 //(975)				/ 12/105)	6 50/165
menes(mm)	2-1016	2.01(31)	3.12(130)	0.11(07.3)				1.10(100)	0.00(100

0 0

		UTS250	
		250A	
		2.3	
		н	
<u> </u>	<u> </u>	1176250	_ <u>_</u>
		013250	
150	65	100	150
100	35	65	100
50	18	35	50
-		-	-
		UTS 250	
65	35	50	65
65	35	50	65
		UTS250	
150	65	100	150
100	25	65	100
50	10	05	50
50	- 18	35	50
		100%	
		750 Vac	
		8 kVac	
		A	
		150~250A	
		•	
		0	
		•	
Δ)		(150 2504	3
		-	<u> </u>
		-	
		220A	
		•	
		250A	
		•	
		•	
		0	
		•	
		•	
		•	
		0	
		•	
		•	
		0	
		<u> </u>	
		0	
		•	
		•	
		•	
		•	
		3.88(1.76)	
		4.49(2.04)	
	W	L. 10(2.04)	D
0.44(075)	4 10/105	740/100	0.44(075)
3.44(87.5)	4.13(105)	7.48(190)	3.44(87.5)
The second se		1010 ISU	To T

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 sales@spikeelectric.com | spikeelectric.com Copyright © 2020 Spike Electric Controls

- 1				17 P
	015400			015600
	400A			000A
N	<u>2, 3</u>	<u> </u>	N	<u>2, 3</u>
N		<u> </u>	N	
	015400			015600
- 65	100	- 150	- 65	- 100
35	65	100	35	65
18	35	50	18	35
	UTS400			UTS600
35	50	65	35	50
35	50	65	35	50
	UTS400			UTS600
65	100	150	65	100
35	65	100	35	65
18	35		18	35
	750.Voo			750 Voo
	750 Vac			750 Vac
	-			-
	Α			Α
2	250/300/350/400	Ą		500/600A
	•			•
	Ō			•
	•			•
	●(250, 400A)			●(400, 600A)
	● (250, 400A)			● (400, 600A)
	-			-
	320A			500A
	 400A			600A
	•			•
	•			•
	•			0
	•			•
	•			•
	•			
	•			•
	•			<u> </u>
				•
	•			•
	•			<u> </u>
	•			•
	•			•
	•			•

12.02(5.45)

13.89(6.30)

н

11.42(290)

11.42(290)

D

4.33(110)

4.33(110)

w

5.51(140)

5.51(140)

w

5.51(140)

5.51(140)

150

100

50

65

65

150

100 50

÷

13.45(6.10)

15.79(7.16)

13.39(340)

13.39(340)

D

4.33(110)

4.33(110)

MCCE

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 Copyright © 2020 Spike Electric Controls sales@spikeelectric.com | spikeelectric.com

C

US

Air Circuit Breakers

Susol

LS

Derwent Top 100 Global Innovator 2020

Susol Super Solution Air Circuit Breakers

0

OOPEN

00000

Super Solution

Codes and standards

UA Series are manufactured and tested in accordance with the following standards Low-Voltage Power Circuit Breaker

- ANSI C37.13
- ANSI C37.16
- ANSI C37.17
- ANSI C37.50
- UL 1066 (cULus Listed)
- CSA C22.2 No.31-10

Note) Throughout this document, the phrase "ANSI Certified" means the product meets the requirements of UL 1066 and ANSI C37

Contents

Overview	4
External configuration	14
Internal configuration	16
Ordering	18

- Ratings 22
 Trip relays 24
- Trip relays 2
- Accessories 50
- Electrical diagram 76
- Dimensions 78

Super Solution

n

Premium Susol ACB meets your demands for high breaking capacity with full line-up up to 6000A, all in optimized frame sizes for panel design. Various accessories and connection methods realize user-friendly handling.

Susol ACB provides the total solution with an advanced trip relay for measurement, diagnosis, analysis, and communication as well as protective functions for absolute protective coordination and electric power monitoring system.

0.00

LS Super Solution series

- Modular design
- High (130kA) breaking capacity full line-up to 6000A
- Satisfy the needs for compact sized panels
- N-Phase conducting capacity 100%
- Interchangeable trip unit and rating plug

Safety

Monitor temperatures for safety (Optional)

- Careful selection of materials
- Zero arc space
- Perform discriminations between upstream and downstream levels

User convenience

Various connection types for main circuit terminals

- Easy installation of accessories
- Interchangeable Trip unit and Rating plug

Intelligent trip relay

Various advanced functions for protection, measurement, diagnosis, analysis, communication

Susol Manual Motor Starters

0

UL 1066 ANSI C37

Susol Air Circuit Breakers

Susol Molded Circuit Breakers

Susol Magnetic Contactors & Overload Relays

Full line-up & Compact

Up to 6000A, Susol ACB provides a full line-up of 3 compact frame sizes. Enables users to design panels of optimal volume.

800~1600AF

800~3200AF

W = 16.22" (412mm)

OOkA

W = 13.15" (334mm)

UAS-08/16D

08	800AF
16	1600AF

85kA at 508Vac W=13.15" (334mm) 3p, 16.50" (419mm) 4p

UAH-08~32E

08	800AF
16	1600AF
20	2000AF
25	2500AF
32	3200AF

100kA at 508Vac W=16.22" (412mm) 3p, 20.75" (527mm) 4p

3200~6000AF

W = 30.91" (785mm)

- High breaking capacity: 85/100/130kA (at 508Vac)
- 3 ampere frame sizes: 1600/3200/6000AF
- N phase current conducting capacity: 100%

130kA

UAH- 32~60G

32	3200AF
40	4000AF
50	5000AF
60	6000AF

130kA at 508Vac W=30.91" (785mm) 3p, 39.96" (1015mm) 4p

Trip Relay (OCR)

Trip relays are classified according to function.

Trip relays are classified according to their uses and functions to maximize customers' satisfaction. Classified trip relays and easy installation.

- Protection: overload, short current, ground fault, earth leakage, under voltage, over voltage, under frequency, over frequency, reverse power, unbalance, etc
- Measurement: voltage, ampere, power, energy, frequency, power factor, harmonics, etc.
- Event & fault recording: Max. 256 events & faults
- Communication: Modbus/RS-485, Profibus-DP

Susol ACB trip relay, which can be interlocked with the breaker mechanism, provides the world's best protection. It improves the breaking capacity, enhances the ACB's life, and provides advanced functions - measurement, diagnosis, analysis, and communication.

Susol ACB Trip relay

- L/S/I/G/Thermal
- Self Power
- RTC Timer mounted
- Fault information (LED)

- L/S/I/G/Thermal
- ZSI
- ERMS
- Modbus/RS-485
- Profibus-DP
- Self Power
- AC/DC 100~250V
- DC 15~60V
- RTC timer mounted
- Fault recording (10EA)

- L/S/ I/G/Thermal(Continuous)
- UV/OV/OF/UF/rP/Vun/lun

110

P/S type

IGITAL TRIP BELA

- Measurement: V/A/W/Wh/F/PF
- Harmonics (63th), Waveform (S Type)
- ZSI
- ERMS
 Modbus/RS-485
- Profibus-DP
- AC/DC 100~250V
- DC 15~60V
- RTC timer mounted
- Event recording (256EA)
- Fault recording (256EA)
- Fault wave (S Type)

N type (Normal)

• Self-power + Current protection

Trip relays series

P type (Power meter)

A type + Power meter +
 Voltage / Frequency / Unbalance protection

- S type (Supreme)
- P type + Harmonics analysis (63 th) + Fault wave recording

Rating Plug for selection of rated current and frequency

Rating Plug

Rating Plug enables the changing rated current(In) without CT replacement Frequency selection switch: set to 50Hz or 60Hz

Cradle

- 1 Safety Shutter (ST)
- 2 Zero Arc Space (ZAS)
- 3 Cell Switch (CEL)
- 4 Door Interlock (DI)
- 5 MOC (Mechanical

Operated Cell Switch)

- Mechanical Interlock (MI)
 Mis-Insertion Prevention Device (MIP)
 Safety Control Cover (SC)
- 9 Racking Interlock (RI)

Other_

- 10 Door Frame (DF)
- 11 Dust Cover (DC)
- 12 Lifting Hook (LH)
- **13** UVT Time Delay Controller (UDC)
- 14 Profibus-DP Communication Module
- 15 Remote I/O
- 16 Temperature Alarm

Connection and Installation

Air Circuit Breakers

Multiple connections

Various installation methods

Standard connection

Mixed connection

Vertical type

Front type

Horizontal / Vertical type

Vertical / Horizontal type

Vertical / Front type

Front / Horizontal type

Front / Vertical type

- Front connection type is available to be connected regardless of the depth of main circuit terminal and it is suited for panels with limited installation space.
- The vertical and horizontal type terminal are module type which can be adjusted by rotating the module 90 degrees.
- Please refer to the rating lists (Page 22~25) because the installation method varies according to the rated current.

External Configuration

Susol

Fixed type ACB

Draw-out ACB (Cradle)

Terms

- 1 Trip relay
- Ounter
- OFF button
- ON button
- **5** Series name
- 6 Charge handle
- Rated name plate
- 8 Charge/Discharge indicator
- Olosed/Open indicator
- Corporation logo
- ① Arc cover (Zero Arc Space)
- Bafety control cover
- B Cradle
- Oraw-out handle
- B Position indicator
- Handle inserting hole
- Pad lock button
- 🚯 Arc chute
- Control cover
- Ø Fixed type bracket
- Rating plug

Susol

Cradle (Internal)

Cradle (Rear)

Terms

- Safety control cover
- ② Draw-out handle
- 8 Position indicator
- 4 Handle inserting hole
- 6 Pad lock button
- 6 Connecting conductor (Line side)
- Connecting conductor (Load side)

Control power and

terminal No.

Main nameplate

[Acronym explanation]

LS Susol
Low Voltage AC Power Circuit Breaker
Frame Size :
Poles :
Frequency : 50/60 Hz
UL 1066 / ANSI C37.13
Rated Short Circuit Current (kA)
Rated Short Time Current (kA)
Cat.
MFG. Date : Serial No. :
MADE IN KOREA

[Secondary nameplate]

ACCESSORIES
Motor charge
Closing coil
Shunt tripping coil
Auxiliary switches
OCB Control source
Alarm switch
Digital Trip Relay(OCR)
- Alarm(LSIG) Reset
- Zone Selective Interlocking
- Communication
- Farth/Leakage
Earthy Ecakage
Tomporaturo consor
Temperature sensor
Available Adaptor
Instruction manual 79563466001

Explanation of terminologies

- Motor charge —
- Closing coil
- Shunt tripping coil —
- Auxiliary switches: Contact specification and terminal No.
- Under voltage trip: UVT terminal No.
- OCR control source: Trip relay control power
- Alarm switch: Alarm and terminal No.
- Digital trip relay: Switching diagram
- Z.S.I: Input/Output terminal No.
- Reset: LED/LCD reset
- Communication: Communication and terminal No.
- Voltage module: Phase voltage and symbol
- Earth/Leakage: Ground fault / Earth leakage input terminal No.

Internal Configuration

Susol

Terms

- Trip relay
- Is Front cover

Susol

Terms

- Control circuit terminal block
- Ontrol terminal
- 8 Auxiliary switches
- 4 Closing, Shunt, UVT coil
- 6 Trip relay
- 6 Front cover
- Ø Mechanism
- 8 Charge handle
- Irip spring
- Closing spring
- ① Draw-in/out device
- Arc extinguishing part
- B Moving contact
- Fixed contact
- Conductor on line side
- Cradle finger
- 🕼 Cradle
- Connecting conductor
- (B CT (Current transformer)
- Onductor on load side

Ordering Susol Breaker and accessories

Internal Configuration Susol

	M1			01			D1		H	X	N	G0		U	1	AL	
	Motor operation	ator				Sh	unt tri	С			Trip	relay				Option	
MA	None (Manua	l opera	ited)		D0	None	•				Refer to	o page	21				
M1	AC/DC 100)V~12	5V		D1	AC/E	DC 100	V~125	V								
M2	AC/DC 200)V~25	0V		D2	AC/E	DC 200	V~250\	V								
М3	DC 125V				D3	DC 1	25V										
M4	DC 24V~30	V			D4	DC 2	4V~30	V									
M5	DC 48V~60	V			D5	DC 4	8V~60	V									
M8	AC 48V				D7	AC 4	8V										
												_					
			Clos	ing coi	il			Cha	arging/Au	uxiliary sv	vitch			U	VT		
		D0	None				ΗΣ	Higl	n capacit	y OFF ch	narge/5a5b		U0	None			
		D1	AC/D	C 100V	/~125\	/	НС	Higl	n capacit	y ON cha	arge/5a5b		U1	AC/DC	100V~125V		
		D2	AC/D	C 200V	/~250\	/	G۷	(Hig	n capacit	y OFF ch	narge/3a3b		U2	AC/DC	200V~250V	_	
		D3	DC 12	25V			G	Higl	n capacit	y ON cha	arge/3a3b	_	U3	DC 125	5V	_	
		D4	DC 24	V~30\	/								U4	DC 24\	/~30V		
		D5	DC 48	3V~60\	/								U5	DC 48\	/~60V	_	
		D7	AC 48	V									U6	AC 380)V~480V	_	
													U7	AC 48\	/		

Code	Description			Description				
AL	AL1+MRB		K	K1	Key lock			
A1	AL1+MRB +RE	S (AC110~130V) *AC only	K2	K2	Key Interlock set			
A2	AL1+AL2 +MR	3	K3	K3	Key Interlock double			
A3	AL1+MRB +RE	S (DC110~125V) *DC only	K5	K5	Profalux lock (CAMLOCK type)			
A4	AL1+MRB +RE	S (AC200~250V) *AC only	K6	K6	Kirkkey lock (CAMLOCK type)			
A5	5 AL1+MRB +Auto reset			K7	Kirkkey lock (CN22 type)			
A6	6 AL1+AL2 +MRB +Auto reset			RCS	Ready to close switch			
A7	AL1+MRB +RE	S (DC110~125V) +Auto reset *DC only	Т	ТМ	Temperature monitoring			
A8	AL1+MRB +RE	S (AC200~250V) +Auto reset *AC only	H1		AC/DC 100V ~125V, Double shunt coil			
A9	AL1+MRB +RE	S (AC110~130V) +Auto reset *AC only	H2		AC/DC 200V ~250V, Double shunt coil			
S	CS2	Charge switch communication	H3	SHT2 Note 2)	DC 125V, Double shunt coil			
В	В	Lockable On/Off button cover	H4		DC 24V ~30V, Double shunt coil			
М	MI	Mechanical interlock	H5		DC 48V ~60V, Double shunt coil			
D	DI or MOC	Door interlock or MOC (Mechanism operated cell switch)	H7		AC 48V, Double shunt coil			

NO1	A4 (AL1+MRB +RES(AC200~250V))+B(Lockable On/Off button cover)+K(Key lock)+R(Ready to close switch)+M(Mechanic interlock)+
INUT	E(Spring auto release)
NIOO	AL (AL1+MRB)+K(Key lock(OFF lock))+R(Ready to close switch)+D(Door interlock or MOC)+H1(AC/DC 100V ~ 130V,
INU2	Double shunt coil)+E(Spring auto release)
N03	B(Lockable On/Off button cover)+K2(Key interlock set)+R(Ready to close switch)+T(Temperature monitoring)
N04	A4(AL1+MRB+RES(AC200~250V))+B(Lockable On/Off button cover)+K(Key lock(OFF lock))+M(Mechanical interlock)+T(Temperature monitoring)
NOF	A1(AL1+MRB+RES110~130V)+B(Lockable On/Off button cover)+K(Key lock(OFF lock))+R(Ready to close switch)+
CUVI	M(Mechanical interlock)+T(Temperature monitoring)
N06	A2(AL1+AL2+MRB)+K(Key lock(OFF lock))+R(Ready to close switch)+T(Temperature monitoring)

Note) 1. * Codes for over 5 optional accessories are composed separately 2. UVT and SHT2 can not be selected together. Select one of two. 3. C(counter) is provided as standard.

Ordering Susol

Adapter (Cradle)

UAL	
For UL ACB cradle type	

The second se

S16D						
Frame	size ^{Note)}					
S16D	1600AF					
S20E	2000AF					
S25E	2500AF					
S32E	3200AF					
S50G	5000AF					
S60G	6000AF					

		<u> </u>			Î
Nı	Jm	ber	of poles		
3			3P		
4			4P	_	
				_	
	СС	Sec	condary ector type		
А	С	onn	ector type	•	
В	S	crev	w joint type	Э	

	Η	(E		S
Terminal configuration			Shutter		
Н	Horizontal type	F	Without		
V	Vertical type	-	safety shutter		
м	Line: Horizontal	F	With safety		
	Load: Vertical		shutter		
NI	Line: Vertical				
IN	Load: Horizontal				
Р	Front type			Othe	eropuons
G	Horizontal-con type			0	
W	Vertical-con type			5	Arc cover

Note) The corresponding Breaker Adapter

Br	Adapter							
UAS-08D	UAS-08W	916D						
UAS-16D	UAS-16W	3100						
UAH-08E	UAH-08X							
UAH-16E	UAH-16X	S20E						
UAH-20E	UAH-20X							
UAH-25E	UAH-25X	S25E						
UAH-32E	UAH-32X	S32E						
UAH-32G	UAH-32Z							
UAH-40G	UAH-40Z	S50G						
UAH-50G	UAH-50Z							
UAH-60G	UAH-60Z	S60G						

* Terminals for P type must be ordered separately

* G and W types can be applicable to S16D (1600AF) only.

Rating plug

Rating plug classfication				ACB ampere frame							
	For none NCT type	For NCT type	Rating	800A	1600A	2000A	2500A	3200A	4000A	5000A	6000A
	73263466352	73263466372	400A								
	73263466353	73263466373	600A	400A~							
	73263466354	73263466374	630A	800A							
	73263466355	73263466375	800A								
	73263466356	73263466376	1000A		0004		1200A~ 2500A				
	73263466357	73263466377	1200A		800A~ 1600A	10004					
Rating	73263466358	73263466378	1250A			2000A~					
plug	73263466359	73263466379	1600A			20004					
code	73263466360	73263466380	2000A					10004			
	73263466361	73263466381	2500A					1600A~			
	73263466362	73263466382	3000A					0200A	2000A~		
	73263466363	73263466383	3200A						4000A	2500A~	
	73263466364	73263466384	3600A							5000A	3000A~
	73263466365	73263466385	4000A								6000A
	73263466366	73263466386	5000A								
	73263466367	73263466387	6000A								

* A rating plug ranging from 50 to 100% of the ACB ampere frame should be used.

* The minimum value of the OCR self-power supply is based on the CT rating, not the rating plug rating.

Susol **Trip relay**

Ratings for UL Listing/ANSI Certified Susol UA Circuit Breakers

		Turne		
		Туре		
		AF		
Rated current (In max)	(A)			at 40°C
Rated current	(A)			at 40°C
Rated maximum voltage	(V)			
Frequency	(Hz)			
Number of poles	(P)			
Type of trip relay (Electro	nic trip device)			
Rated short circuit curren	t (kA)	With	AC	635V
(Sym.)		instantaneous		508V
UL 1066				254V
ANSI C37.13		Without	AC	635V
		instantaneous		508V
				254V
Rated short time current	(kA)			
Operating time (t)	(ms)	Maximum total b	preaking time	
		Maximum closir	ig time	
Life cycle ACB	(time)	Mechanical	Without maintenan	се
			With maintenance	
		Electrical	Without maintenan	се
			With maintenance	
Weight	lb (kg)	Drawout type	Main Body	3P
			with Cradle	4P
			Only Cradle	3P
				4P
		Fixed type	Motor charging	3P
			type	4P
External	Draw-out type	in (mm)	$H \times W \times D$	3P
dimension				
				4P
J.				
	Fixed type	in (mm)	$H \times W \times D$	3P
-w C				
				4P
Enclosure dimension		in (mm)	$H \times W \times D$	3P
				4P

Su	sol									
UAS-										
08	16									
800	1600									
	800									
400	1000									
600 1200										
630 1250										
800 1600										
254V/50	8V/635V									
50/	/60									
3P/	/4P									
N, A, P, S	S (4 type)									
6	5									
8	5									
8	5									
6	5									
6	5									
6	5									
6	5									
50	ms									
80	ms									
12,5	500									
	-									
2,8	00									
154	(70)									
104	(70)									
71	(00)									
71	(32)									
77	(35)									
99	(45)									
16.93 × 13	15×16.02									
(430×33	34×407)									
16.93×16	5×16.02									
(430×41	19×407)									
11.81×11.	.81×11.61									
(300×30	00×295)									
11.81×15.	.16×11.61									
(300×38	35×295)									
19.69×15.	.75×13.39									
(500×40	00×340)									
19.69×19.	.69×13.39									
(500×50	00×340)									

Susol

		Susol		
		UAH-□□E		
08	16	20	25	32
800	1600	2000	2500	3200
400	800	1000	1200	1600
600	1000	1200	1250	2000
630	1200	1250	1600	2500
800	1250	1600	2000	3000
	1600	2000	2500	3200
	2	54V/508V/635	V	
		50/60		
		3P/4P		
	١	I, A, P, S (4 type	e)	
		85		
		100		
		100		
		85		
		85		
		85		
		85		
		50ms		
		80ms		10.500
	12,	500		12,500
		-		-
	2,8	00		1,000
	214 (07)	-	245 (111)	-
	214 (97)		243 (111)	320 (140)
	260 (122)		200 (1/0)	/1///100)
	269 (122)		309 (140)	414 (188)
	269 (122) 99 (45) 121 (55)		309 (140) 123 (56) 152 (69)	414 (188) 205 (93) 256 (116)
	269 (122) 99 (45) 121 (55) 101 (46)		309 (140) 123 (56) 152 (69) 110 (50)	414 (188) 205 (93) 256 (116) 196 (89)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57)		309 (140) 123 (56) 152 (69) 110 (50) 137 (62)	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16	93×16.22×16	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) 02	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16.	93×16.22×16 430×412×407	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02)	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16. (16.	93×16.22×16 430×412×407 93×20.75×16	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02 .02	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16. (16)	93×16.22×16 430×412×407 93×20.75×16 430×527×407	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02) .02)	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16. (16. (16. (11.	93×16.22×16 430×412×407 93×20.75×16 430×527×407 81×14.88×11	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02) .02) .61	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16 (16) (11) (11)	93×16.22×16 430×412×407 93×20.75×16 430×527×407 81×14.88×11 300×378×295	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02) .02) .61	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16. (16) (11) (11)	93×16.22×16 430×412×407 93×20.75×16 430×527×407 81×14.88×11 300×378×295 81×19.41×11 300×493×295	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02) .61) .61	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16 (11, (11, (11, (11, (11, (11,)) (19,)	93×16.22×16 430×412×407 93×20.75×16 430×527×407 81×14.88×11 300×378×295 81×19.41×11 300×493×295 69×19.69×13	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02) .02) .61) .61) .39	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16. (16. (11. (11. (11.) (19.) (19.)	93×16.22×16 430×412×407 93×20.75×16 430×527×407 81×14.88×11 300×378×295 81×19.41×11 300×493×295 69×19.69×13 500×500×340	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02) .02) .61) .39)	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)
	269 (122) 99 (45) 121 (55) 101 (46) 126 (57) 16 (16) (11) (11) (11) (11) (11) (11)	93×16.22×16 430×412×407 93×20.75×16 430×527×407 81×14.88×11 300×378×295 81×19.41×11 300×493×295 69×19.69×13 500×500×340 69×24.21×13	309 (140) 123 (56) 152 (69) 110 (50) 137 (62) .02) .02) .61) .61) .39)	414 (188) 205 (93) 256 (116) 196 (89) 249 (113)

	S	usol									
	UAH-□□G										
32	40	50	60								
3200	4000	5000	6000								
1600	2000	2500	3000								
2000	2500	3000	3200								
2500	3000	3200	3600								
3000	3200	3600	4000								
3200	3600	4000	5000								
	4000	5000	6000								
	254V/50	8V/635V									
	50/	/60									
	3P/	(4P									
	N, A, P, S	6 (4 type)									
	10	00									
	13	30									
	13	30									
	10	00									
	10	00									
	1(00									
	10	00									
	50	ms									
	90	ms									
	10,0	000									
	1.0	-									
	1,0										
	489 (222)		709 (321)								
	626 (284)		919 (417)								
	276 (125)		482 (218)								
	355 (161)		630 (286)								
	227 (103)		433 (196)								
	287 (130)		561 (255)								
	18.11×30	.91×16.02									
	(460×78	35×407)									
	18.11×39.	.96×16.02									
	(460×10	15×407)									
	11.81×29	.57×11.61									
	(300×75	51×295)									
	11.81×38	.62×11.61									
	(300×98	31×295)									
	31.5×32.4	48×13.39									
	(800×82	25×340)									
	31.5×41.	54×13.39									
	(800×10	55×340)									

Trip relay(OCR)

The trip relay of Susol ACB provides the additional protection functions for voltage, frequency, unbalance, and others in addition to main protection functions for over current, short-circuit, ground fault. It supports the advanced measurement functions for voltage, current, power, electric energy, harmonics, communication function, and others.

Analog trip function interlocked with mechanism enhances the durability as well as the breaking capacity of the ACB.

Zone selective interlocking function makes the protective coordination more simple and thermal memory can be applied to various loads.

Contents

Trip relay types	25
N type: 「Normal」 type	26
A type: ^r Ammeter _J type	28
P type: ^r Power meter _J type	30
S type: ^r Supreme meter _J type	32
Operation characteristic	34
Measurement function	36
Man machine interface	37
Protection element setting	38
Measurement element display	39
Characteristic curves	40
ZSI - Zone Selective Interlocking	45
Remote reset and digital I/O	46
Communication	47
Event & fault recording	48
System information	48
System block diagram	49

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 sales@spikeelectric.com | spikeelectric.com Copyright © 2020 Spike Electric Controls

Trip Relays

Trip relay types

Classification	N type	A type	P type	S type
		0	a	•
Externals				
	•L/S/I/G	 L / S / I / G(or Earth leakage) 	 L / S / I / G(or Earth leakage) 	 L / S / I / G(or Earth leakage)
Current		Thermal	 Thermal(Continuous) 	Thermal(Continuous)
protection		 ZSI(Protective coordination) 	 ZSI(Protective coordination) 	 ZSI(Protective coordination)
		• ERMS	• ERMS	• ERMS
		 Earth leakage (Option) 	 Earth leakage(Option) 	Earth leakage(Option)
Other	-		Over/Under voltage	Over/Under voltage
Other			Over/Under frequency	Over/Under frequency
protection			Unbalance(Voltage/Current)	Unbalance(Voltage/Current)
			Reverse power	Reverse power
		Current (R / S / T / N)	• 3 Phase Voltage/Current RMS/Vector	3 Phase Voltage/Current RMS/Vector
			Power(P, Q, S), PF(3-Phase)	• Power(P, Q, S), PF(3-Phase)
			Energy(Positive/Negative)	Energy(Positive/Negative)
Measurement	-		Frequency, Demand	Frequency, Demand
function				Voltage/Current harmonics (1st~63th)
				3 Phase Waveforms
				THD, TDD, K-Factor
			Fine adjustment for long/short	Fine adjustment for long/short
Fine adjustment	-	-	time delay/instantaneous/ ground	time delay/instantaneous/ ground
			Overload protection relays	Overload protection relays
Pre Trip Alarm	-	-	: DO (Alarm) (Ground fault is not	: DO (Alarm) (Ground fault is not
			available when using Pre trip alarm)	available when using Pre trip alarm)
Digital Output		 3DO (Fixed) 	 3DO (Programmable) 	 3DO (Programmable)
Digital Output	_	• L, S/I, G Alarm	 Trip, Alarm, General 	Trip, Alarm, General
IDMTL setting	_	_	Compliance with IEC60255-3	Compliance with IEC60255-3
			SIT, VIT, EIT, DT	SIT, VIT, EIT, DT
Communication	-	Modbus/RS-485	Modbus / RS-485	Modbus / RS-485
	0.15	Profibus-DP	Profibus-DP	Profibus-DP
	• Self Power	• Self Power	• AC/DC 100~250V	• AC/DC 100~250V
	- Power source	- Power source works	• DC 15~60V	• DC 15~60V
D	Works over 20% of	over 20% of load current.	Basic protection fu	unction(L/S/L/G)
Power supply	load current.	- External power source are	is still under p	armal operation
		required for comm.	is suit under no	
		• AC/DC 100~250V	without cor	itroi power.
DTC timor				
	- - Long time delay		• Available	
LED for	Short time delay/Instantancous	Short time delay/Instantancous	Short time delay/Instantancous	Short time delay/Instantaneous
trip info.	· Ground fault	· Ground fault	· Ground fault	· Ground fault
		• 10 records	• 256 records	256 records
		(Fault/Current/Data and Time)	(Fault/Current/Data and Time)	- Lost fault wave recording
Fault recording	-	(i auto ounento bate and nine)		(voltage, current are recorded in 3-phase, and can be read only by communication)
Event recording	-	-	256 records(Content, Status, Date)	256 records(Content, Status, Date)
Operating	Reset button	Reset, Menu	Reset, Menu	• Reset, Menu
button		Up/Down, Tap, Enter	Up/Down, Tap, Enter	Up/Down, Tap, Enter
Each OCR type has Batt 1. Battery lifespan 1) When turned off: 14 2) When using 1 LED of	tery in itself. ~28years consecutively or turned off: 7~14days	 The display minimum range of O 1) A type: When more 15% than n 2) P/S type: When more 12% that 	* L/S/I/G(or Ea CR current Unable to se ated current (In) simultaneou n rated current (In)	arth leakage) configuration as standard lect ground fault and earth leakage sly

Trip Relays

N type: [Normal] type

- Optimized protection function
- Overload protection
 - Long-time delay
 - Thermal
- Short-circuit protection
 - Short-time delay/Instantaneous
- I²t On/Off optional (for short-time delay)
- Ground fault protection
 - I²t On/Off optional
- Self-Power

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 sales@spikeelectric.com | spikeelectric.com Copyright © 2020 Spike Electric Controls

Trip Relays

Protection

Long time											
Current setting (A)	lu = ln>	<	0.5	0.6	0.7	0.8	0.9	1.0			
	$Ir = Iu \times$		0.8	0.83	0.85	0.88	0.9	0.93	0.95	0.98	1.0
Time delay (s)	tr@(1.5	×lr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: ±15% or	tr@(6.0	×lr)	0.5	1	2	4	8	12	16	20	Off
below 100ms	tr@(7.2	×lr)	0.34	0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time											
Current setting (A)	lsd = Ir	×	1.5	2	3	4	5	6	8	10	Off
Time delay (s)	to al	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% or	tsa	I²t On @(10×Ir)		0.1	0.2	0.3	0.4				
below 50ms	(12+ Off)	Min. Trip Time(ms)	20	80	160	260	360				
	(FUOII)	Max. Trip Time(ms)	80	140	240	340	440				
Instantaneous											
Current setting (A)	$Ii = In \times$		2	3	4	6	8	10	12	15	Off
Tripping time			belov	v 50m	3						
Ground fault											
Pick-up (A)	lg = ln>	<	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)	ta	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: $\pm 10\%$ (lg \geq 0.4ln)	-9	I²t On @(1×In)		0.1	0.2	0.3	0.4				
$\pm 20\%$ (lg<0.4ln) or below 50ms	(12) 040	Min. Trip Time(ms)	20	80	160	260	360				
	(Ft Off)	Max. Trip Time(ms)	80	140	240	340	440				

Trip Relays Susol

A type: ^rAmmeter₁ type

- Overload protection
 - Long-time delay
 - Thermal
- Short-circuit protection
 - Short-time delay/Instantaneous
 - I²t On/Off optional (for short-time delay)
- Ground fault protection
 - I²t On/Off optional
 - Trip/Alarm selectable (need external power)
 - Blocking Time (0~60s)
 - Does not detect ground fault during Blocking time.
- Realization of protective coordination by ZSI (Zone Selective Interlocking)

 - Disable / Enable Selectable
- High-performance and high-speed MCU built-in - Accurate measurement with tolerance of 1.0%

- Measurement and Display Function
 - High detailed measurement for current
 - character LCD type
- Fault recording
 - Records Max. up to 10 fault information about fault type, fault phase, fault data, occurrence time of fault
- SBO (Select Before Operation) High reliability for control and setting change method
- 3 DO(Digital Output)
- Fixed
- Communication
 - Modbus/RS485
 - Profibus-DP
- ERMS
 - Arc Flash Reduction
 - Instantaneous setting value is minimized. (2*In)

(Rotation)

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 Copyright © 2020 Spike Electric Controls sales@spikeelectric.com | spikeelectric.com

Trip Relays

Protection

Long time											
Current setting (A)	lu = ln :	×	0.5	0.6	0.7	0.8	0.9	1.0			
	$Ir = Iu \times$		0.8	0.83	0.85	0.88	0.9	0.93	0.95	0.98	1.0
Time delay (s)	tr@(1.5	imesIr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: ±15% or	tr@(6.0	\times lr)	0.5	1	2	4	8	12	16	20	Off
below 100ms	tr@(7.2	imesIr)	0.34	0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time											
Current setting (A)	lsd = Ir	×	1.5	2	3	4	5	6	8	10	Of
Time delay (s)	tod	l ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% or	เรน	l²t On @(10×lr)		0.1	0.2	0.3	0.4				
below 50ms		Min. Trip	20	80	160	260	360				
	(I ² t Off)	Time(ms)	20	00	100	200	000				
	(1 1 0 11)	Max. Trip	80	140	240	340	440				
		Time(ms)									
Instantaneous											
Current setting (A)	li = ln×	<	2	3	4	6	8	10	12	15	Off
Tripping time			belov	v 50m	S						
Ground fault											
Pick–up (A)	lg = ln:	×	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)	ta	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10%(Ig≥0.4In)	ig	l²t On @(1×ln)		0.1	0.2	0.3	0.4				
±20%(lg<0.4ln)		Min. Trip	20	80	160	260	360				
or below 50ms	(l²t ∩ff)	Time(ms)	20	00	100	200	000				
	(1 C C II)	Max. Trip Time(ms)	80	140	240	340	440				

Earth leakage (Option)											
Current setting (A)	l∆n		0.5	1	2	3	5	10	20	30	Off
Time delay (ms)		Alarm	140	230	350	800	950				
Accuracy: ±15%	۰t	Time(ms)		200							
	Δ.	Trip		230	350	800					
		Time(ms)	140	200	000	000					

Note) Current setting values are secondary current of the external CT. Recommended not to use current setting values more than 5A.

Trip Relays Susol

P type: 'Power meter' type

- Overload protection - Long-time delay
 - Thermal
- Short-circuit protection
 - Short-time delay/Instantaneous - I²t On/Off optional (for short-time delay)
- Ground fault protection
 - I²t On/Off optional
 - Trip/Alarm selectable (need external power)
 - Blocking Time (0~60s)
- Do not ground fault detect during Blocking time Protection for Over voltage/Under voltage/Over
 - frequency/Under frequency/Unbalance/Reverse power
- Realization of protective coordination by ZSI
 - (Zone Selective Interlocking)
 - Disable/Enable Selectable
- Fine-adjustable setting by knob and key

ERMS

- Arc Flash Reduction
- Instantaneous setting value is minimized. (2*In)

- IDMTL setting (SIT, VIT, EIT, DT curve) Basic setting : "None". Thermal curve.
- Measurement and Display Function
- High detailed measurement for 3 phase current/Voltage/Power/Energy/Phase angle/Frequency/PF/Demand
 - 128 x 128 Graphic LCD
- Indicates current/voltage Vector Diagram and Waveform Fault recording
 - Records Max. up to 256 fault information about fault type, fault phase, fault value, occurrence time of fault
- Event recording
- Records events of device related to setting change, operation and state change. (Max. up to 256)
- SBO (Select Before Operation)
- High reliability for control and setting change method 3 DO(Digital output)
- Programmable for alarm, trip and general DO
- Communication
 - Modbus/RS485
 - Profibus-DP

2 LED: Indication of trip info. and overload state

① Graphic LCD: Indication of measurement and information

- Rating plug
 - Rated current setting (45~100% of the AF)
 - Frequency selectable(60Hz/50Hz)

Trip Relays

Protection

Long time											
Current setting (A)	$lr = ln \times$		0.4	0.5	0.6	0.7	0.8	0.9	1.0		
Time delay (s)	tr@(1.5	×lr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: ±15% or	tr@(6.0	\times lr)	0.5	1	2	4	8	12	16	20	Off
below 100ms	tr@(7.2	×lr)	0.34	0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time											
Current setting (A)	lsd = Ir	×	1.5	2	3	4	5	6	8	10	Off
Time delay (s)	1	l ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% or	tsd	l²t On @(10×lr)		0.1	0.2	0.3	0.4				
below 50ms	(12+ 0#)	Min. Trip Time(ms)	20	80	160	260	360				
	(PLOII)	Max. Trip Time(ms)	80	140	240	340	440				
Instantaneous											
Current setting (A)	$li = ln \times$		2	3	4	6	8	10	12	15	Off
Tripping time			belov	v 50m	6						
Ground fault											
Pick-up (A)	lg = ln>	<	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)	ta	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: $\pm 10\%$ (lg ≥ 0.4 ln)	.ug	l²t On @(1×In)		0.1	0.2	0.3	0.4				
±20%(lg<0.4ln)		Min. Trip	20	80	160	260	360				
or below sorths	(I ² t Off)										
		Time(ms)	80	140	240	340	440				

ł	Earth leakage (Option)											
	Current setting (A)	l∆n		0.5	1	2	3	5	10	20	30	Off
	Time delay (ms)		Alarm	140	220	250	800	050				
	Accuracy: ±15%	.+	Time(ms)	140	230	330	800	900				
		ΔL	Trip	140	000	250	000					
			Time(ms)	140	230	350	800					

Note) Current setting values are secondary current of the external CT. Recommended not to use current setting values more than 5A.

PTA(Pre Trip Alarm)										
Current setting (A)	Ip = Ir x …	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1
Time delay (s) Accuracy: ±15%	tp@(1.2×lp)	1	5	10	15	20	25	30	35	Off

Other protect	otion		Pick-u	Tim	ne delay(s)	
Other protection		Setting range	Step	Accuracy	Setting range	Step	Accuracy
Under voltage	;	80V ~ 0V_Pick-up	1V	$\pm 5\%$			
Over voltage		UV_Pick-up ~ 980V	1V	±5%	6 1.2~40sec		
Voltage unbal	ance	6% ~ 99%	1%	±2.5% or (*±10%)			
Reverse powe	er	10~500 kW	1kW	±10%	0.2 40500		
Over power		500~5000 kW	1kW	±10%	0.2~40560	0.1000	+0.1000
Current unbal	ance	6% ~ 99%	1%	±2.5% or (*±10%)		0.1560	10.1500
Over	60Hz	UF_Pick-up ~ 65	1Hz	±0.1Hz			
frequency	50Hz	UF_Pick-up ~ 55	1Hz	±0.1Hz	1.2~40sec		
Under	60Hz	55Hz ~ OF_Pick-up	1Hz	±0.1Hz			
frequency	50Hz	45Hz ~ OF_Pick-up	1Hz	±0.1Hz			

Trip Relays

S type: 'Supreme meter' type

- Overload protection
 - Long-time delay
 - Thermal
- Short-circuit protection
 - Short-time delay/Instantaneous
- I²t On/Off optional (for short-time delay)
 Ground fault protection
 - Ground fault protection
 - I²t On/Off optional
 - Trip/Alarm selectable (need external power)
 - Blocking Time (0~60s)
- Do not ground fault detect during Blocking time Protection for Over voltage/Under voltage/Over
- frequency/Under frequency/Unbalance/Reverse power Realization of protective coordination by ZSI
- (Zone Selective Interlocking) - Disable/Enable
- Fine-adjustable setting by knob and Key
- IDMTL setting (SIT, VIT, EIT, DT curve)
 Basic setting : "None". Thermal curve.
- ERMS
- Arc Flash Reduction
- Instantaneous setting value is minimized. (2*In)

- Measurement and Display Function
 - High detailed measurement for 3 phase current/Voltage/ Power/Energy/Phase angle/Frequency/PF/Demand
 - 128 x 128 Graphic LCD
- Indicates current/voltage Vector Diagram and Waveform
 Fault recording
 - Records Max. up to 256 fault information about fault
 - type, fault phase, fault value, occurrence time of fault
 - Fault wave recording: records the latest fault wave
- Event recording
 - Records events of device related to setting change, operation and state change. (Max. up to 256)
- SBO (Select Before Operation)
- High reliability for control and setting change method
 Power quality analysis
 - Measurement for 1st~63th harmonics
- THD, TDD, k-Factor
- Voltage/current waveform capture
- 3 DO(Digital output)
- Programmable for alarm, trip and general DO
- Communication
 - Modbus/RS485
- Profibus-DP

Trip Relays

Protection

Long time												
Current setting (A) Ir = In >		$lr = ln \times$		0.4	0.5	0.6	0.7	0.8	0.9	1.0		
Time delay (s)		tr@(1.5	×lr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: ±15% d	or	tr@(6.0	×lr)	0.5	1	2	4	8	12	16	20	Off
below 1	00ms	tr@(7.2	imes lr)	0.34	0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time												
Current setting (A)		lsd = Ir	×	1.5	2	3	4	5	6	8	10	Off
Time delay (s)			l ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% d	or	tsd	$\frac{1}{1^{2} \text{t On } @(10 \times \text{lr})} = 0.1 = 0.2 = 0.3 = 0.4$									
below 50ms	0ms	(12) 040	Min. Trip Time(ms)	20	80	160	260	360				
		(I ² t Off)	Max. Trip Time(ms)	80	140	240	340	440				
Instantaneous												
Current setting (A)		$li = ln \times$		2	3	4	6	8	10	12	15	Off
Tripping time				below 50ms								
Ground fault												
Pick–up (A)		lg = ln>	<	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)		ta	l ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10%(Ig≥0.4	g≥0.4In)	ig	l²t On @(1×In)		0.1	0.2	0.3	0.4				
±20%(I or below	g<0.4In) v 50ms	(12) 0.00	Min. Trip Time(ms)	20	80	160	260	360				
		(I ² t Off)	Max. Trip Time(ms)	80	140	240	340	440				

Earth leakage (Option)											
Current setting (A)	l∆n		0.5	1	2	3	5	10	20	30	Off
Time delay (ms)		Alarm	140	230	350	800	950				
Accuracy: ±15%	۸t	lime(ms)									
	<u> </u>	Trip Time(ms)	140	230	350	800					

Note) Current setting values are secondary current of the external CT. Recommended not to use current setting values more than 5A.

PTA(Pre Trip Alarm)										
Current setting (A)	lp = lr x …	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1
Time delay (s)	tp@(1.2×Ip)	1	5	10	15	20	25	30	35	Off
Accuracy. ± 1370										

Other protection			Pick-u	Time delay(s)			
Other protec	Suon	Setting range	Step	Accuracy	Setting range	Step	Accuracy
Under voltage	;	80V ~ 0V_Pick-up	1V	$\pm 5\%$			
Over voltage		UV_Pick-up ~ 980V 1V ±5%		1.2~40sec			
Voltage unbala	ance	6% ~ 99%	1%	±2.5% or (*±10%)			
Reverse power		10~500 kW	1kW	±10%	0.2 40500		
Over power		500~5000 kW	1kW	±10%	0.2~40560	- 0.1sec	±0.1sec
Current unbala	ance	6% ~ 99%	1%	±2.5% or (*±10%)			
Over	60Hz	UF_Pick-up ~ 65	1Hz	±0.1Hz			
frequency	50Hz	UF_Pick-up ~ 55	1Hz	±0.1Hz	1.2~40sec		
Under	60Hz	55Hz ~ OF_Pick-up	1Hz	±0.1Hz			
frequency	50Hz	45Hz ~ OF_Pick-up	1Hz	±0.1Hz			

Trip Relays

Operation characteristics

Long-time delay (L)

he function for overload protection which has time delayed
haracteristic in inverse ratio to fault current.

- 1. Standard current setting knob: Ir
 - 1) Setting range in P type and S type: (0.4-0.5-0.6-0.7-0.8-0.9-1.0)×In
 - 2) Setting range in N type and A type: (0.4 ${\sim}1.0){\times}In$
 - lu: (0.5-0.6-0.7-0.8-0.9-1.0)×ln
 - Ir: (0.8-0.83-0.85-0.88-0.9-0.93-0.95-0.98-1.0)×Iu
- 2. Time delay setting knob: tr
 - Standard operating time is based on the time of $6{\times}\mbox{Ir}$
 - Setting range: 0.5-1-2-4-8-12-16-20-Off sec (9 modes)
- 3. Relay pick-up current
 - When current over $(1.15) \times Ir$ flows in, relay is picked up.
- 4. Relay operates basing on the largest load current among R/S/T/N phase.

Short-time delay (S)

The function for fault current (over current) protection which has definite time characteristic and time delayed in inverse ratio to fault current.

- 1. Standard current setting knob: Isd
 - Setting range: (1.5-2-3-4-5-6-8-10-Off)×Ir
- 2. Time delay setting knob: tsd
 - Standard operating time is based on the time of $10 \times Ir$.
 - Inverse time (I2t On): 0.1-0.2-0.3-0.4 sec
 - Definite time (I²t Off): 0.05-0.1-0.2-0.3-0.4 sec
- 3. Relay operates basing on the largest load current among R/S/T/N phase.
- 4. When ZSI function is set, the protection operation will take place instantaneously with input absence by downstream devices. It is advised to disable its ZSI function on the last downstream device.

Instantaneous (I)

The function for breaking fault current above the setting value within the shortest time to protect the circuit from short-circuit.

- 1. Standard current setting knob: li
 - Setting range: (2-3-4-6-8-10-12-15-Off)×In
- 2. Relay operates basing on the largest load current among R/S/T/N phase.
- 3. Total breaking time is below 50ms.
- 4. When using the ERMS function, Instantaneous setting value is applied as 2*In (N type OCR does not apply)

Trip Relays

Ground Fault (G)

The function for breaking ground fault current above setting value after time-delay to protect the circuit from ground fault.

- 1. Standard setting current knob: Ig
 - Setting range: (0.2-0.3-0.4-0.5-0.6-0.7-0.8-1.0-Off) × In
- 2. Time delay setting knob: tg
 - Inverse time (l²t On): 0.1-0.2-0.3-0.4 sec
 - Definite time (l²t Off): 0.05-0.1-0.2-0.3-0.4 sec
- 3. Ground fault current is vector sum of each phase current. Therefore, 3Pole products may operate under its phase-unbalance including ground fault situations.(R+S+T+(N) Phase)
- 4. When ZSI function is set, the protection operation will take place instantaneously with input absence by downstream devices. It is advised to disable its ZSI function on the last downstream device.
- 5. Ground-fault functions are basically provided with products equipped with a trip relay through its internal CT that is embedded in each phase.(But, it can't be used with earth-leakage protection function at the same time)

Earth Leakage (G) - Option

The function for breaking earth leakage current above setting value after time delay to protect the circuit from earth leakage. (A, P, S type)

- 1. Standard setting current knob: $I_{\triangle n}$
 - Setting range: 0.5-1-2-3-5-10-20-30-Off (A)
- 2. Time delay setting knob: ${\scriptscriptstyle \bigtriangleup} t$
 - Trip time: 140-230-350-800 ms
 - Alarm time: 140-230-350-800-950 ms
- 3. Setting values within the alarm range will not trip the breaker but will activate its alarm.
- 4. This function is enabled and can be used only with private external CT(secondary output 5A) selected by customers.
- 5. When ZSI function is set, the protection operation will take place instantaneously with input absence by downstream devices. It is advised to disable its ZSI function on the last downstream device.

※ Use cautions with earth-leakage current settings

- When using ZCT provided by customers, the setting range should be from 0.5 to 5A based on its secondary current.(Secondary output rating : 5A)

Hence, under 100:5A CT, if trip relay is set to 0.5A, earth-leakage exceeding 10A will activate its operation ($0.5A \times 20 = 10A$)

※ Guideline for external CT usage

- Earth-leakage protection characteristics using the standard CT that is installed inside the ACB can protect currents from 20 to 100% range on its rated current.
- As rated currents on ACB increases, current that is covered by its standard CT increase as well. This can not protect against small leakage currents.
- ex) 400A ACB Min. Earth-leakage current 400A $\times 20\%$ =80A
 - 4000A ACB Min. Earth-leakage current 4000A×20% =800A
- Therefore, customers are advised to install an external CT in accordance with its rated currents within its systems. And choose trip relay(E, X type) which is required with external CT usage in order to provide earth-leakage functions.

Trip Relays

Measurement function

$ \begin{array}{ c c c c } \label{eq:current} & a, b, c & c & c$	Class.	element	Detailed element	Unit	Display range	Accuracy
CurrentNormal currentInAA type: 0.10119 Fnm P/S type: 0.121n-1.61nReverse currentIzInP/S type: 0.121n-1.61nP/S type: 0.121n-1.61nWoltageVa,Vb,VcVV $\frac{\pm 19\%}{\pm 19\%}$ Normal voltageV1Feverse voltageV2InAngleLine-to-current $2Vabla, 2Vablb, 2Vablc, 2VabVca$ $ \frac{\pm 11\%}{\pm 11\%}$ AngleLine-to-current $2VabVb, 2VaVca$ $ 0-360^{\circ}$ $\frac{\pm 11}{\pm 11\%}$ Phase-to-phase $2VaVb, 2VaVca$ $ 0-360^{\circ}$ $\frac{\pm 11\%}{\pm 11\%}$ PowerReactive powerPa(ab), Pb(cb), Pc(ca), PkW1kWa-99,999kW $\pm 33\%$ PowerReactive powerQa(ab), Qb(bc), Qc(ca), QkVar1kVar-99,999kVar $\pm 33\%$ Active energyWHa(ab), WHb(bc), WHAMWh1kWa-99,999kVar $\pm 33\%$ PowerReactive energyVARHa(ab), VARHb(bc), WWh1kVarh-9999,99MVarh $\pm 33\%$ Freq.FrequencyFHz45-65HzPower factor(PF)PFa(ab), PFb(b), PFc(ca), PF+: Lead, -: LagUnbalanceUnbalance rateIunalance, Vunbalance%0.0-100.0DemandCurrent demandPeak demandA80A-65,535AHarmonicsVoltage1st-63th harmonics of Ia,Ib,IcA80A-65,535ATHD, TDD%0.0-100.0-0.0-100.0		Line current	la,lb,lc		Λ type: 0.15lp. 17lp	±3%
Reverse current 1_2 $1^{1/2}$ (1/2) (Current	Normal current	l1	A	R type: 0.13/1~17/11	
VoltageLine voltageVab,Vbc,VcaVab,Vbc,VcaVab,Vbc,VcaVab,Vbc,VcaVab,Vbc,Vbb,Vbb,Vbb,Vbb,Vbb,Vbb,Vbb,Vbb,Vb		Reverse current	12	Ont Display range A A type: 0.15In~17In P/S type: 0.12In~1.6In V 60~690V ° 0~360° kW 1kW~99,999kW kVar 1kVar~99,999kVar kVA 1kVA~99,999kVar kWh 1kWh~9999.99MWh MWh 1kWh~9999.99MWh KWh 1kWh~9999.99MWh Hz 45~65Hz +: Lead, -: Lag % 0.0~100.0 kW 1kW~99999sWW A 80A~65,535A V 60~690V A 80A~65,535A % 0.0~100.0		
$\begin{tabular}{ c c c c } \hline Phase voltage & Va,Vb,Vc & V \\ \hline Normal voltage & V1 & & & & & & & & & & & & & & & & & $		Line voltage	Vab,Vbc,Vca			±1%
$\begin{tabular}{ c c c c } \hline Normal voltage & V_1 & V & 00-050V & \hline \\ \hline Reverse voltage & V_2 & & & & & \\ \hline \\ \hline \\ \hline \\ Reverse voltage & V_2 & & & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Angle & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Valtaga	Phase voltage	Va,Vb,Vc		60, 600)/	±1%
Index (a)Reverse voltage V_2 (a)(a)(a) $Angle$ Line-to-line Line-to-current $\angle Vabla, \angle Vablb, \angle Vablc,$ $\angle VabVbc, \angle VabVca$ \wedge \wedge \wedge $\pm 1^*$ $Angle$ Phase-to-current $\angle VaVb, \angle VaVc$ \wedge \wedge -360° $\pm 1^*$ $Phase-to-current\angle VaVb, \angle VaVc\wedge+1^*\pm 1^*PowerActive powerPa(ab), Pb(bc), Pc(ca), PkW1kW-99,998W\pm 3\%PowerReactive powerQa(ab), Qb(bc), Qc(ca), QkVar1kVar-99,998Var\pm 3\%PowerActive energyWha(ab), Whb(bc),Wh(ca), WHkWh1kWh-9999.998Wh\pm 3\%PowerReactive energyVARHa(ab), VARHb(bc),WHA(ca), VARHkWh1kWh-9999.99MWh\pm 3\%PowerReverse activerWHa(ab), rWHb(bc),WHA(ca), rWHkWh1kWh-9999.99MWh\pm 3\%Power factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, :-Lag\pm 3\%Power factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, :-Lag\pm 3\%Power factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, :-Lag\pm 3\%Power factorPower factor(PF)Peak demandA80A-65,535A+Power factorPower factor(PF)Peak demandA80A-65,535A+Power factorVa(ab),Vb(bc),Vc(ca)\psi\thetao-690V\psi+Power factorVa(ab),Vb(bc),Vc($	voltage	Normal voltage	V1	v	00~0907	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Reverse voltage	V2			
$ \begin{array}{ c c c c c } \label{eq:hambda} \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Line-to-line	\angle Vabla, \angle Vablb, \angle Vablc,			⊥ 1 °
$\begin{array}{ c c c c } \hline Phase-to-phase $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Angle	Line-to-current	∠VabVbc, ∠VabVca		0.000	<u> </u>
$\begin{array}{ $	Angle	Phase-to-phase	∠VaVb,∠VaVc]	0~300	±1°
$\begin{array}{ c c c c } & \mbox{Active power} & \mbox{Pa(ab), Pb(bc), Pc(ca), P} & \mbox{kW} & \mbox{1kW-99,999kW} & \mbox{1kW-99,999kWa} & \mbox{1kW-99,999kVar} & \mbox{1s36} \\ \hline & \mbox{Apparent power} & \mbox{Sa(ab), Sb(bc), Sc(ca), S} & \mbox{kVa} & \mbox{1kVa-99,999kVar} & \mbox{1s36} \\ \hline & \mbox{Apparent power} & \mbox{Sa(ab), Sb(bc), Sc(ca), S} & \mbox{kVA} & \mbox{1kVA-99,999kVA} & \mbox{1s36} \\ \hline & \mbox{Apparent power} & \mbox{Sa(ab), Sb(bc), Sc(ca), S} & \mbox{kVA} & \mbox{1kVA-99,999kVA} & \mbox{1s36} \\ \hline & \mbox{Apparent power} & \mbox{Sa(ab), VARHa(ab), VHH(bc), & \mbox{kVm} & \mbox{kVm} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{kVarh} & \mbox{hubble} & \mbox{hubble} & \mbox{kV} & \mbox{hubble} & \mbox{hubble} & \mbox{kV} & \mbox{hubble} & \mbox{hubble} & \mbox{hubble} & \mbox{hubble} & \mbox{hubble} & \mbox{kV} & \mbox{hubble} & $		Phase-to-current	∠Vala, ∠Vblb, ∠Vclc]		±1°
PowerReactive powerQa(ab), Qb(bc), Qc(ca), QkVar1kVar-99,999kVar $\pm 3\%$ Apparent powerSa(ab), Sb(bc), Sc(ca), SkVA1kVA-99,999kVA $\pm 3\%$ Apparent powerSa(ab), Sb(bc), Sc(ca), SkVA1kVA-99,999kVA $\pm 3\%$ Active energyWHa(ab), WHb(bc), WHc(ca), WHkWh MWh1kWh-9999.99MWh $\pm 3\%$ Reactive energyVARHa(ab), VARHb(bc), VARHc(ca), VARHkVarh Mvarh1kWh-9999.99MWh $\pm 3\%$ Reverse active energyr/WHa(ab), r/WHb(bc), r/WHc(ca), r/WHkWh MWh1kWh -9999.99MWh $\pm 3\%$ Freq.FrequencyFHz45~65Hz $\pm 3\%$ Power factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, -: Lag $\pm 3\%$ UnbalanceUnbalance ratelunalance, Vunbalance $\%$ $0.0~100.0$ $\pm 3\%$ DemandActive power demandPeak demandA $80A-65,535A$ $\pm 3\%$ Voltage1st-63th harmonics of harmonics V $60~690V$ $60~690V$ Harmonics1st-63th harmonics of Ia,Ib,IcA $80A-65,535A$ $\pm 1HD, TDD$ Harmonics1st-63th harmonics of Ia,Ib,IcA $80A-65,535A$ $\pm 1HD, TDD$ K-Factor- $0.0~100.0$ $\pm 1HD, TDD$ $\pm 0.0~100.0$		Active power	Pa(ab), Pb(bc), Pc(ca), P	kW	1kW~99,999kW	±3%
Apparent powerSa(ab), Sb(bc), Sc(ca), SkVA1kVA-99,999kVA $\pm 3\%$ Active energyWHa(ab), WHb(bc), WHc(ca), WHkWh MWh1kWh~9999.99MWh $\pm 3\%$ Reactive energyVARHa(ab), VARHb(bc), VARHc(ca), VARHkVarh Mvarh1kWar-9999.99MWarh $\pm 3\%$ Reverse active energyrWHa(ab), rWHb(bc), rWHc(ca), rWHkWh MWwh1kWh~9999.99MWh $\pm 3\%$ Freq.FrequencyrWHa(ab), rWHb(bc), rWHc(ca), rWHkWh MWwh1kWh~9999.99MWh $\pm 3\%$ Freq.FrequencyFHz45~65HzPower factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+ : Lead, -: LagUnbalanceUnbalance ratelunalance, Vunbalance%0.0~100.0Lourent demandPeak demandA80A~65,535AVoltage1st~63th harmonics of harmonicsV $60~690V$ Harmonics1st~63th harmonics of la,lb,lcA80A~65,535ATHD, TDDIthermonics of la,lb,lc%0.0~100.0K-Factor-0.0~100.0-	Power	Reactive power	Qa(ab), Qb(bc), Qc(ca), Q	kVar	1kVar~99,999kVar	±3%
$\begin{array}{l c c c c } & & & & & & & & & & & & & & & & & & &$		Apparent power	ower Sa(ab), Sb(bc), Sc(ca), S		1kVA~99,999kVA	±3%
Active energyWHc(ca), WHMWhIKWI1-3939.99MWI1±3%Reactive energyVARHa(ab), VARHb(bc), VARHc(ca), VARHkVarh Mvarh1kVarh~9999.99MVarh±3%Reverse active energyrWHa(ab), rWHb(bc), rWHc(ca), rWHkWh MWh1kWh ~9999.99MWh±3%Freq.FrequencyFHz45~65HzPower factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, -: LagUnbalanceUnbalance ratelunalance, Vunbalance%0.0~100.0DemandActive power demandPeak demandA80A~65,535AVoltage harmonics1st~63th harmonics of la,lb,lcA80A~65,535AHarmonicsCurrent harmonics1st~63th harmonics of la,lb,lcA80A~65,535ATHD, TDD%0.0~100.0-0.0~100.0K-FactorI-Corrent-0.0~100.0-		Active energy	WHa(ab), WHb(bc),	kWh	11/11/h 0000 00M/11/h	+ 20/
$\begin{array}{c c c c c c } \mbox{Percent} & VARHa(ab), VARHb(bc), & kVarh & Mvarh & NVarh-9999.99MVarh & \pm 3\% & \\ \mbox{Percent} & VARHa(ab), VARHb(bc), & kVarh & Mvarh & NVarh & NVARHa(ab), rWHb(bc), & kWh & NVH & NVH & NWh & NVH & NVH & NVH & NVH & & & & & & & & & & & & & & & & & & &$		Active energy	WHc(ca), WH	MWh	1KVVII~9999.991010011	<u> </u>
LifelgyHeactive energyVARHc(ca), VARHMvarhInvaline 3939.99MValin10.76Reverse active energyrWHa(ab), rWHb(bc), rWHc(ca), rWHkWh MWh1kWh ~9999.99MWh±3%Freq.FrequencyFHz45~65HzPower factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, -: LagUnbalanceUnbalance ratelunalance, Vunbalance%0.0~100.0DemandActive power demandPeak demandA80A~65,535ACurrent demandPeak demandA80A~65,535AVoltage harmonics1st~63th harmonics of la,lb,lcA80A~65,535AHarmonicsCurrent harmonics1st~63th harmonics of la,lb,lcA80A~65,535ATHD, TDD%0.0~100.0-0.0~100.0	Enorgy	Popotivo oporav	VARHa(ab), VARHb(bc),	kVarh	1k\/arb_0000_00M\/arb	+ 204
$ \begin{array}{ c c c c } \hline Reverse active & rWHa(ab), rWHb(bc), & kWh \\ energy & rWHc(ca), rWH & MWh \\ \hline MWh & P9999.99MWh \\ \hline MWh & P999.99MWh \\ \hline MWh & P999.99MWh \\ \hline MWh & P999.99MWh \\ \hline \\ $	Lifergy	neactive energy	VARHc(ca), VARH	Mvarh	TKValli~9999.99101valli	1070
InvertexenergyrWHc(ca), rWHMWhINVERTexInvertexFreq.FrequencyFHz45~65HzPower factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, -: LagUnbalanceUnbalance ratelunalance, Vunbalance%0.0~100.0DemandActive power demandPeak demandKW1kW~99999kWCurrent demandPeak demandA80A~65,535AVoltage harmonics1st~63th harmonics of Va(ab),Vb(bc),Vc(ca)V60~690VHarmonicsCurrent harmonics1st~63th harmonics of la,lb,lcA80A~65,535ATHD, TDD%0.0~100.0-0.0~100.0		Reverse active	rWHa(ab), rWHb(bc),	kWh	1kW/b0000 00MW/b	+3%
Freq.FrequencyFHz45~65HzPower factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, -: LagUnbalanceUnbalance ratelunalance, Vunbalance%0.0~100.0MarcinePeak demand%0.0~100.0Current demandPeak demandA80A~65,535AVoltage1st~63th harmonics ofV60~690Vharmonics1st~63th harmonics of Ia,Ib,IcA80A~65,535ATHD, TDD%0.0~100.0%0.0~100.0		energy	rWHc(ca), rWH	MWh	180011~3333.331010011	1070
Power factorPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PF+: Lead, -: LagUnbalanceUnbalance ratelunalance, Vunbalance%0.0~100.0DemandActive power demandPeak demandkW1kW~99999kWCurrent demandPeak demandA80A~65,535AVoltage1st~63th harmonics of harmonicsV60~690VCurrent harmonics1st~63th harmonics of la,lb,lcA80A~65,535ATHD, TDD%0.0~100.0%K-Factor-0.0~100.0	Freq.	Frequency	F	Hz	45~65Hz	
UnbalanceUnbalance rateIunalance, Vunbalance%0.0~100.0DemandActive power demandPeak demandkW1kW~99999kWCurrent demandPeak demandA80A~65,535AVoltage harmonics1st~63th harmonics of Va(ab),Vb(bc),Vc(ca)V60~690VCurrent harmonics1st~63th harmonics of Ia,Ib,IcA80A~65,535ACurrent harmonics1st~63th harmonics of Ia,Ib,IcA80A~65,535ATHD, TDD%0.0~100.0K-Factor-0.0~100.0	Power factor	Power factor(PF)	PFa(ab), PFb(bc), PFc(ca), PF		+: Lead, -: Lag	
Active power demandPeak demandKW1kW~99999kWCurrent demandPeak demandA80A~65,535AVoltage1st~63th harmonics of harmonicsV60~690Vharmonics1st~63th harmonics of Ia,Ib,IcA80A~65,535ACurrent harmonics1st~63th harmonics of Ia,Ib,IcA80A~65,535ATHD, TDD549%0.0~100.0K-Factor-0.0~100.0	Unbalance	Unbalance rate	Iunalance, Vunbalance	%	0.0~100.0	
Demand Iterate demand Iterate demand Iterate demand Current demand Peak demand A 80A~65,535A Voltage 1st~63th harmonics of harmonics V 60~690V Current harmonics 1st~63th harmonics of la,lb,lc A 80A~65,535A Current harmonics 1st~63th harmonics of la,lb,lc A 80A~65,535A THD, TDD % 0.0~100.0 60~100.0 K-Factor - 0.0~100.0 0.0~100.0		Active power	Peak demand	LW.	11/1/,000001/1/	
Current demand Peak demand A 80A~65,535A Voltage 1st~63th harmonics of harmonics V 60~690V Harmonics 1st~63th harmonics of Ia,Ib,Ic A 80A~65,535A Current harmonics 1st~63th harmonics of Ia,Ib,Ic A 80A~65,535A THD, TDD % 0.0~100.0 60~100.0 K-Factor - 0.0~100.0 0.0~100.0	Demand	demand			1807~33333800	
Voltage 1st~63th harmonics of harmonics V 60~690V Harmonics Va(ab),Vb(bc),Vc(ca) V 60~690V Current harmonics 1st~63th harmonics of Ia,Ib,Ic A 80A~65,535A THD, TDD % 0.0~100.0 K-Factor - 0.0~100.0		Current demand	Peak demand	A	80A~65,535A	
harmonicsVa(ab),Vb(bc),Vc(ca)V00-030VHarmonicsCurrent harmonics1st~63th harmonics of la,lb,lcA80A~65,535ATHD, TDD%0.0~100.0K-Factor-0.0~100.0		Voltage	1st~63th harmonics of	V	606901/	
Harmonics Current harmonics 1st~63th harmonics of la,lb,lc A 80A~65,535A THD, TDD % 0.0~100.0 K-Factor - 0.0~100.0		harmonics	Va(ab),Vb(bc),Vc(ca)	v	00~030V	
THD, TDD % 0.0~100.0 K-Factor - 0.0~100.0	Harmonics	Current harmonics	1st~63th harmonics of la,lb,lc	A	80A~65,535A	
K-Factor - 0.0~100.0		THD, TDD		%	0.0~100.0	
		K-Factor		-	0.0~100.0	

Voltage module

For P and S type trip relays, a separate voltage module is necessary to measure other elements beside the current. (Separate purchase necessary)

- Voltage input range: AC 60~690V
- Input/Output Ratio → 220V: 200mV

V2 V3 Vn

1000 A

T N

R S

Initial display

Trip Relays

Man machine interface

An example of graphic LCD display

Trip Relays

Protection element setting

Fine adjustment of protection setting current

- OCR and OCGR's current setting is basically controlled by knob's setting values.
- The fine current that cannot be controlled by knob is adjustable by using ♥, △ key.
- Fine adjustment is only adjustable in the present knob and next knob's setting range, when moving knob, the adjusted data becomes reset state.

• The setting method of OCGR is same with OCR's, fine adjustment is available.

Trip Relays

Measurement element display

5914 E. Sam Houston Pkwy S. Houston TX 77034 | Toll Free 1.844.279.8295 | Local Factory Support 832.243.5372 | Fax 832.569.5645 sales@spikeelectric.com | spikeelectric.com Copyright © 2020 Spike Electric Controls

Trip Relays

Characteristics curves

Long-time delay (L)

Trip Relays

Short-time delay (S)

Trip Relays

Characteristics curves

Trip Relays

IDMTL

Trip Relays

Characteristics curves

Pre Trip Alarm

Trip Relays

 $\star \star$ Made in the USA $\star \star \star$

ZSI - Zone Selective Interlocking (A, P, S type)

Zone-selective interlocking drops the delay time for breakers to eliminate faults. It minimizes the shock that all kinds of electric machineries get under fault conditions.

- 1. In the case that a short time-delay or a ground fault accident occurs in a ZSI built-in system, the breaker at the accident site sends a ZSI signal to halt the upstream breaker's operation.
- 2. To prevent a breakdown, the trip relay of the ACB at the accident site activates trip operation with no time delay.
- 3. The upstream breaker that receives the ZSI signal adheres to a pre-set short time-delay or ground fault time-delay for protective coordination in the system. However, the upstream breaker that does not receive the signal will trip instantaneously.
- For normal ZSI operation, operation time should be arranged accordingly so that downstream circuit breakers will react before upstream breakers under overcurrent/short time delay/ground fault situations.
- 5. ZSI connecting line needs to be Max. 3m.

- 1) Occurrence of fault A
- Only breaker ① performs instantaneous trip operation.
- 2) Occurrence of fault B
 - Breaker ② performs instantaneous trip operation, breaker ① performs trip operation after prearranged delay time
 - But if breaker 2 did not break the fault normally,
 - breaker ① performs instantaneous trip operation to protect system.

Trip Relays

ERMS and digital I/O (A, P, S type)

ERMS(Energy Reduction Maintenance Setting) is a function to reduce the arc energy to ensure workers' safety. When using the ERMS function, the instantaneous setting value is minimized(2*In). A, P, and S type trip relays are able to perform the ERMS by digital input and have 3 DO (digital output).

1. To use the ERMS function, short both ends of ERMS terminal

- 2. Digital input
 - [EM1-EM2] input: ERMS
 - [Z1-Z2] Input: ZSI input
 - [E1-E2] Input: ZCT for earth leakage detection or external CT input
- ** All DI are dry contact that has 3.3V of recognition voltage. When inputting close by SSR(Solid State Relay) or open-collector, connect collector (Drain) to EM1.
- 3. Digital output 3a (524, 534, 544-513)
 - Fault output: Long/Short time delay, Instantaneous, Ground fault, UVR, OVR, UFR, OFR, rPower, Vunbal, lunbal
 - (Maintains state as Latch form until user pushes reset.)
 - General DO: when setting L/R as remote, it is available to control close/open remotely by using communication.

Trip Relay	Digital Output	Long time	Short time	Instantaneous	Ground	Overload Alarm	OVR	UVR	rPower	Vunbal	lunbal	OFR	UFR	OPR	Note
P, S type	DO1(524)	•	0	0	0	0	0	0	0	0	0	0	0	0	Programmable
	DO2(534)	0	•	•	0	0	0	0	0	0	0	0	0	0	
	DO3(544)	0	0	0	•	0	0	0	0	0	0	0	0	0	
A type	DO1(524)	•	×	Х	Х										
	DO2(534)	×	•	•	Х	Not available							Fixed		
	DO3(544)	X	×	×	٠										

Air Circuit Breakers

Trip Relays

Communication

Modbus/RS-485

- Operation mode: Differential
- Distance: Max. 1.2km
- Cable :
- General RS-485 shielded twist 2-pair cable
- Baud rate :
- 9600bps, 19200bps, 38400bps • Transmission method: Half-Duplex
- Termination: 100Ω

- Profibus-DP module is installed separately (Option)
- Operation mode: Differential
- Distance: Max. 1.2km
- Cable :
- Profibus-DP shielded twist 2-pair cable
- Baud rate: 9600bps~12Mbps
- Transmission method: Half-Duplex
- Termination resistor: 100Ω
- Standard: EN 50170/DIN 19245

Profibus-DP communication module (Option)

Trip Relays Susol Event & fault recording (P, S type)

When events such as setting change, information change, self-diagnosis error, and status change occur, the P and S types can record up to 256 events in accordance with time(ms). In addition, they can record up to 526 (up to 10 for A type) faults, including information such as fault cause, fault phase, fault value, and so on, in accordance with time(ms).

Event information display

* Fault information is recorded only when there is external control power

System information

P and S type can display the ACB's information as following.

- Present time: year/month/date/hour/minute/ms
- ACB current ratings
- N-phase current ratings: 100%
- Frequency information: 60Hz / 50Hz
- Closing numbers of breaker: CB ON numbers
- Trip relay operating time: OCR ON time
- ON time of breaker: CB ON time
- F/W ver. information

System information display

Air Circuit Breakers

Trip Relays

System block diagram

Air Circuit Breakers

Accessories

Mounting		Accessories	A	Daga	
wounting		Accessones	Standard	Option	Page
	SHT1	Shunt Coil		0	52
	SHT2	Double Shunt Coil		0	53
	СС	Closing Coil		0	54
	М	Motor		0	55
	CS1	Charge Switch		0	55
	CS2	Charge Switch Communication **		0	55
Internel	UVT	Under Voltage Trip Device		0	56
Internal	AL	Trip Alarm Contact **		0	57
	MRB	Manual Reset Button **		0	57
	RES	Remote Reset Switch		0	58
	RCS	Ready to Close Switch		0	58
	С	Counter	•		65
	AX	Auxiliary Switch		0	59
	ТМ	Temperature Alarm **		0	74
	K1	Key Lock		0	60
	K2	Key Interlock Set		0	60
	K3	Double Key Lock		0	61
	K5	Profalux Lock (CAMLOCK Type)		0	60
	K6	Kirkkey Lock (CAMLOCK Type)		0	60
	K7	Kirkkey Lock (CN22 Type)		0	60
External	В	Lockable ON/OFF Button Cover		0	61
	LH	Lifting Hook		0	62
	CTD	Condenser Trip Device *		0	62
	ATS	Automatic Transfer Switch Controller *		0	63
	DC	Dust Cover		0	65
	DF	Door Frame		0	68
	ОТ	OCR Tester *		0	64

We open up a brighter future through efficient and convenient energy solutions.